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a b s t r a c t

Humans excel when dealing with everyday manipulation tasks, being able to learn new skills, and to adapt to different 
complex environments. This results from a lifelong learning, and also observation of other skilled humans. To obtain 
similar dexterity with robotic hands, cognitive capacity is needed to deal with uncertainty. By extracting relevant multi-
sensor information from the environment (objects), knowledge from previous grasping tasks can be generalized to be 
applied within different contexts. Based on this strategy, we show in this paper that learning from human experiences is 
a way to accomplish our goal of robot grasp synthesis for unknown objects. In this article we address an artificial 
system that relies on knowledge from previous human object grasping demonstrations. A learning process is adopted to 
quantify probabilistic distributions and uncertainty. These distributions are combined with preliminary knowledge 
towards inference of proper grasps given a point cloud of an unknown object. In this article, we designed a method that 
comprises a twofold process: object decomposition and grasp synthesis. The decomposition of objects into primitives is 
used, across which similarities between past observations and new unknown objects can be made. The grasps are 
associated with the defined object primitives, so that feasible object regions for grasping can be determined. The hand 
pose relative to the object is computed for the pre-grasp and the selected grasp. We have validated our approach on a 
real robotic platform—a dexterous robotic hand. Results show that the segmentation of the object into primitives allows to 
identify the most suitable regions for grasping based on previous learning. The proposed approach provides suitable 
grasps, better than more time consuming analytical and geometrical approaches, contributing for autonomous grasping.
1. Introduction

As humans stand out in manipulation tasks – a basic skill for
our survival and a key feature in our manmade world of artefacts
and devices – human manipulation actions and choices can be
observed, learned and used to allow a robot with cognitive skills
to interact and manipulate objects in our environment. In this
work we address an artificial system for grasp synthesis useful for
autonomous grasping. The proposed approach relies on knowledge
from previous human grasping of pre-defined objects recorded
from both human hand and objects’ points of view. A learning
process is adopted to quantify the probability distributions and the
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uncertainty over the human grasp experiences. These distributions
are combined with preliminary knowledge of grasping choice for
specific object shapes towards inference of proper grasping given
an object point cloud coming from the sensor observations (RGB-
D camera). To accomplish our goal of generating grasp hypothesis
given an unknown object, our system is designed in a twofold
process: object decomposition and grasp synthesis. This way, after
the object decompositionwe can find suitable regions for grasping,
as well as the candidate grasps for this object. Fig. 1 depicts an
overview of our proposed approach.

In a first stage, the decomposition of objects into geometrical
shapes is used, across which similarities between past observa-
tions and new unknown objects can be made. Afterwards in a sec-
ond step, the grasp synthesis process generates a list of candidate
grasps for the given object. To grasp an object using an articulated
hand, we can face the problem of a huge number of grasp config-
urations possibilities due to the number of degrees of freedom of
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Fig. 1. Overview of our proposed approach, broken down into object decomposition and grasp synthesis modules.
the hand. A way to simplify this problem is to adopt a grasp taxon-
omy that encloses hand configurations that are often used by hu-
mans to grasp specific object shapes in different contexts. Thisway,
an object shape can be associated with grasp types by observing
humans performing some tasks. We are limiting the huge amount
of candidate grasps into a smaller set of probable grasps, since we
are simplifying the object shape into primitives and using a subset
froma taxonomy of human grasp types.We are using a pre-defined
grasp list comprising of 33 grasp types [1] that can also be used for
unknown objects. Given a set of hand configurations for a specific
object shape, the hand poses relative to the object is computed for
the selected grasp from the hypothesis list generated for the ob-
ject. Using this strategy, we have validated our approach on a real
robotic platform — a dexterous robotic hand [2].

This work contributes with a solution that integrates differ-
ent techniques into a single framework to achieve a full system of
grasp synthesis, starting from the object model acquisition up to
the grasp execution, that at each step minimizes processing time
so as to have an acceptable robot performance time. The artificial
system relies on the fact that humans use previous partial knowl-
edge and naturally grasp objects in a stable and proper way in
different circumstances, such as objects that differ in size, geom-
etry and orientation. We introduce an ad-hoc solution for object
segmentation and subsequent approximation of each of the object
components with a geometrical primitive. This breakdown allows
matching these primitives with known object components for
which sets of viable grasps are known. We introduce a learning
stage where the system, given the sensors readings, automatically
labels the contact points and object graspable regions using an
occupancy grid-basedmethod. The learning stage indexes the gras-
pable regions with a set of candidate grasps. A probabilistic frame-
work is presented in such away that previous observed knowledge
is used for decision making on how to grasp an unknown object.

This article is organized as follows: Section 2 describes re-
lated work; Section 3 describes the object segmentation and
shape approximation given an object point cloud to define object
components for grasping. Section 4 presents how we use the
human demonstrations to learn relevant information for reason-
ing, i.e., inferring how to generate proper grasps for a specific ob-
ject, and estimating the proper region on the object for grasping.
Section 5 presents the grasp synthesis architecture that encloses
the steps mentioned in previous sections and the generation of
grasp pose relative to the object. Section 6 presents the experi-
mental results, including simulations and also an example in a real
application using a dexterous robotic hand. Section 7 draws some
conclusions and presents future work directions.

2. Related work

Grasp synthesis can be achieved by analytical or empirical
approaches. Analytical approaches select the finger positions and
hand configurationswith kinematical and dynamical formulations.
Thus, they generally optimize an objective function such as the
grasp stability or the task requirements. On the other hand,
empirical (knowledge-based or data-driven) approaches use a
learning strategy to choose grasps that depend on the task and
on object shape. They rely on sampling candidate grasps for an
object and ranking them according to a determined measure or
metric [3]. An important factor that needs to be considered in the
development of robotic grasping is ensuring stability during the
object grasping. There are many approaches for robotic grasping
that try to solve this problem, but constraints are encountered. One
is finding suitable stable grasps where the task requirements are
involved, making the process more complex. To model a robotic
grasping, generally, a set of constraints has to be satisfied. First,
the robotic hand kinematics and capabilities must be considered.
Second, the object features must be taken into account. Finally, the
constraints of the task requirements must be analyzed.

When dealing with Learning-by-Demonstration strategies, we
can find different works in the literature where the robot observes
a human performing a task and afterwards it is able to perform
the task by itself. Examples of kinaesthetics demonstrations for
learning and generalization, and situated multimodal interaction
to teach a robot are demonstrated by [4,5], respectively. Mirror
neurons modelling is also a possibility when observing an action
in grasping context as demonstrated by [6]. One of the difficulties
arising in human based learning is how to measure human
performance. Many researchers use data gloves for mapping of
human hand to artificial hand workspace and learn the different



joint angles [7,8], or the corresponding task wrench space [9] in
order to perform a grasp. Stereo vision is often used to track the
demonstrators hand performing a grasp [10] or try to recognize
the hand shape from a database of grasp images [11]. Another
alternative is to combine different sensors, as presented in [12],
which uses a data glove for haptic exploration of objects and vision
to track the wrist pose to acquire the object model to be used by a
robotic platform. The researchpresented by [13] shows an example
of kinaesthetic teach-in task where the robot learn skills from the
demonstrations. The approach uses a mixture of motor primitives
that allows the generalization of the robot movements to a wider
range of situations. The work presented by [14] automatically
extracts action primitives and the corresponding grammar from
continuous movements of several human demonstrations of
grasping tasks. The approach considers that all the actions can be
described by a set of elementary build blocks and there are a set
of rules (grammar) that define how these actions primitives can
be combined. The action primitives are represented by parametric
Hidden Markov Models. The research developed in [15] relies on
a probabilistic approach for learning and imitation. Their work
addresses the learning of affordances encoding the relationship
between actions, objects and effects by the interaction of a robot
with the environment. The visual perception plays an important
role in their work.

Grasping strategies based on object observation analyse its
properties and associate them with different grasps. Some ap-
proaches associate grasp parameters or hand shapes to object
geometric features in order to find good grasps in terms of stabil-
ity [16,17]. Other techniques learn to identify grasping regions in
an object image [18–20]. In [21] objects are modelled on a set of
basic geometrical primitives and rules to generate a set of grasp
in starting positions and pre-grasp shapes are defined. By using
hand pre-shapes, this method can limit the huge number of pos-
sible hand configurations for grasp planning. The planner requires
a manually constructed primitive decomposition of the object, so
that in [22] they removed the need for a manual decomposition
and introduced a multi-level superquadrics representation. Dif-
ferent works use methods such object geometry or object seg-
mentation which can facilitate the grasp hypothesis generation
[23,24]. In [23] an iterative segmentation algorithm for grasping
non-convex objects is proposed. First, the inertial axes of thewhole
object are computed for grasp generation. When the tentative to
obtain valid grasps fails, the object decomposition process starts.
At each iteration of the decomposition step, two components are
obtained towards reaching feasible grasps. The process is repeated
until a grasp is found or the decomposition terminates. The con-
stituting parts of an object shape influence the choice of an object
graspable part, independently of their orientation. The relative size
of the object component is very important to select the graspable
part [25,26]. Before achieving a good strategy for grasping based on
object observations, the object detection has to be well performed.
Many works on grasping are based on vision systems, such as [27],
and also including RGB-D sensors [28].

The research carried out in [29] presents a model for high level
planning of in-hand manipulation tasks using a dexterous robotic
hand. A sequence grasp transitions are autonomously generated
from the initial grasp. The choice of the successive grasps is
modelled as a Markov Decision Process, using the probability of
success of the transitions between canonical grasps to generate a
policymodelled as a Bayesian network. The strategy can be applied
for tasks where grasp transitions are needed. The work developed
in [30] draws on the synergy idea of the fingers joint movements
being adaptive during the grasping. The authors presented an
algorithm that receives as input the joint trajectories that can adapt
to the real contact pressure of each finger in order to guarantee
stability, avoiding the slippage or contact breaking during the
manipulation. In [31] a grasp synthesis solution using a compliance
model to synthesize grasps is proposed. The solution is inspired on
soft-synergies using a kinestatic formulation, and it is considered
as a constrained optimization problem introducing compliance to
address the constraints of contact reachability, object restraint and
force. Other recentwork on the analysis of natural and robotic hand
presents the postural synergies (trajectory in configuration space
assuming a smaller dimension than the kinematic) based on the
physical characteristics of the hand is presented in [32].

Some of theworks previouslymentioned [21–26] use object de-
composition into parts to define a small search space that is likely
to contain many grasps. In our work we use object decomposition,
but unlike the previous approaches, we also use knowledge from
human demonstrations combined with features from the object
model, and hence, suitable grasp regions are associated with the
corresponding grasp configurations as probability distributions for
the components. When new unknown objects are observed, an in-
ference ismade by decomposing the newobject andmatchingwith
the previous knowledge. In particular, the works presented in [21,
23,25], that model objects with superquadrics or use a decomposi-
tion strategy, only present simulation results. Our system can gen-
erate grasp hypothesis not only in simulation, but on-the fly for a
real robotics platform given an unknown object. Processing time
is a key concern to have an acceptable performance. To find object
meaningful parts, we avoid time consuming algorithms based on
mesh segmentation such as used in [25,33], and rely on an ad-hoc
solution for object component segmentation, that combined with
subsequent matching with learned grasps, allows finding suitable
graspable regions. The proposed framework is based on the ob-
served human choices, assigning a limited number of ranked grasp
configurations (candidate grasps) for each shape primitive. Unlike
other works that manually label the object regions after observ-
ing the human grasping [25,26], we rely on an automated pro-
cess. During the demonstrations, sensed contact point locations
enable computation of grasps types and of the object graspable re-
gions. Our framework follows a probabilistic approach to build a
full system of grasp synthesis, taking decisions based on previous
observed data to generalize to other contexts.

3. Object decomposition: segmentation and shape modelling

Humans usually identify object parts in order to search for
a suitable region for grasping. The Recognition By Components
theory (RBC) [34] reveals that humans are able to identify objects
by segmenting them into geometric shapes. If we see an unfamiliar
object, despite its unfamiliarity, we are able to identify this object
by segmenting it into parts at regions of deep concavity, looking for
knownor familiar shapes. Based on this study,we are decomposing
the object point cloud to find meaningful parts for grasping. In a
first step, we present the object segmentation process, and later,
the shape approximation into geometrical primitives. This process
will be used in the learning and grasp synthesis.

3.1. Object segmentation

We proposed an ad-hoc solution for a fast segmentation of ev-
eryday objects enabling a real time performance for a robotic plat-
form. To validate the object decomposition method, we have used
a set with a few everyday objects acquired from different modal-
ities (RGB-D camera, laser-scanner sensor and shape acquisition
from in-hand manipulation [35,36]) to test the method. The set of
everyday objects used in this section is presented in Figs. 2 and 8:
bottle, ladle, mug, Rubik cube, sponge, spray-bottle, wii-mote, wii-
nunchuck and a wooden cat.

The following subsections will present two different solutions
proposed for object segmentation, and their evaluation taking



Fig. 2. Examples of everyday objects with different shapes and sizes that were used to test the decomposition approach.
Fig. 3. Object Segmentation Definition. The object is segmented into three parts:
top, middle and bottom if the object is not so small. The segmentation takes into
consideration the major axis (pc1: principal component), i.e., the axis with the
bigger length.

into account the processing time and a qualitative analysis to
point out the most feasible solution for the next stage of shape
approximation. The first solution is based on the object major axis,
and the second one is based on clustering by Gaussian mixture
models.

3.1.1. Segmentation based on major axis analysis
For the segmentation,we are assuming that all everyday objects

are composed by Top, Middle and Bottom parts if the object size
satisfies a defined threshold of size based on the assumption that
an object cannot be too small that it cannot be grasped properly for
a specific taxonomy, and not too big that the robotic hand cannot
grab it.

The threshold for segmentation is based on the assumption that
humans have knowledge about what is a small, medium or big
object for grasping taking into consideration the hand size and
previous knowledge learned from lifelong experience. Thus, we
defined 7 cm as a starting point for segmentation. If an object
is smaller than that (e.g. a Rubik cube), the segments would be
very small and to apply a power grasp on one of the components
would be a hard task, making it difficult for a robotic hand to
properly grasp the object region. Fig. 3 shows an example of the
segmentation strategy. We use the object-centred representation,
and the object frame of reference is found based on its centre
(origin). The axes are defined as {x, y, z}: right-hand rule (x: index
finger pointing to front; y: middle, pointing to the left; and z
thumb, pointing up).

The segmentation process is based on the idea of methods that
analyse the major axis, such as the known method in the state of
the art, Principal Coordinate Analysis (PCoA),which is a related sta-
tistical technique often used in information visualization for ex-
ploring similarities or dissimilarities of the data. The idea here is
simple; we arrange the data by the major axis based on distance
measures. More specifically, given a set of the 3D points P that
form an object, where a 3D point follows the notation Pi = P(x, y,
z, r, g, b) ∈ P, where {x, y, z} are Euclidean space coordinates and
{r, g, b} the RGB colour components, we search for the axis vec-
tor with higher magnitude. By analyzing the points in each axis
{x, y, z}, we can search the points with maximum and minimum
coordinate values to compute the object length in the Cartesian
space, using the distance between these points. Let e⃗ be a vec-
tor with the points at maximum and minimum coordinate in a
specific axis {x, y, z}, which may take the following forms: ex =
{xmin, xmax}, ey = {ymin, ymax}, ez = {zmin, zmax}. Then the higher
magnitude is computed using the Euclidean distance as follows:

∥ea∥ = |emax − emin|, (1)

where emax is the first element of e, representing the point at the
maximum coordinate in a specific axis and emin is the second el-
ement of e, representing the point at the minimum coordinate in
the same axis. Then we search for the major axis a as follows:

a =

{x}, ∥ex∥ >
ey > ∥ez∥

{y},
ey > ∥ex∥ > ∥ez∥

{z}, ∥ez∥ > ∥ex∥ >
ey . (2)

Afterwards, the segmentation is applied based on the object
axis vector with higher magnitude. Let B be a specific boundary
(top or middle or bottom region) of the object point cloud. Each 3D
point Pi will belong to a specific region (i.e., Rt : top; Rm: middle;
Rb: bottom), if this point is inside of that region boundary. The
boundary verification is achieved by the following steps:

Pi ∈ Rt : (Pa
i ≥ amax −Ba

t ), (3)

pi ∈ Rb : (Pa
i ≤ amin +Ba

b), (4)

Pi ∈ Rm : (amin +Ba
b) < Pa

i < (amax −Ba
t ), (5)

where Pi is a point that belongs to the object point cloud P, i =
{1, . . . , n}; Pa

i is the point’s coordinate in the major axis a; amax
and amin are the points in the major axis at the maximum and
minimum coordinate, respectively; Ba

t is the boundary for Rt in a;
Ba

b is the boundary for Rb in a; Ba
m is the boundary for Rm in a. The



Fig. 4. Segmentation results for everyday objects based on the major axis. The models acquired by in-hand exploration are shown on the left, and on right side the models
acquired using a laser scanner. The right side shows an example (sponge) where the major and the second axis are close in size, so that we have segmented both to compare
the results.
Fig. 5. Mug segmentation: (left) amug acquired by in-hand exploration segmented
into 3 subcomponents; (centre and right) a mug acquired using a laser scanner
segmented into 2 subcomponents, since the dimensions are very similar in two
directions either the vertical or the horizontal axis can end up being selected.

region boundaries were chosen taking into account the expected
size range of the objects, as follows:

Bt =


|amax − amin|

4
, |amax − amin| ≥ 7 cm

|amax − amin|

2
, 5 cm ≤ |amax − amin| < 7 cm

|amax − amin|, |amax − amin| < 5 cm

(6)

Bm =
|amax − amin|

2
, (7)

Bb = Bt , (8)

where the boundaries Bm and Bb are used only if the object size is
bigger then a determined threshold. Algorithm1 shows a summary
version for object segmentation.

Fig. 4 presents the results achieved for some everyday objects
to validate the segmentation method. The object point clouds on
the left were achieved by in-hand exploration [36,35] and on the
right by laser scanner.

Fig. 5 presents twodifferent cases of segmentation and different
number of object components. For the mug object, the two
scanning methods had two distinct results. This will happen for
objects that do not have a clear major axis, and have similar
dimensions along two axes. The segmentationmethod for themug
acquired by the laser scanner selected the y direction as the major
axis.

The segmentation of everyday objects into three components
can describe different candidate regions for grasping. Searching
for optimal or plausible contact points on the entire geometry
of the object (e.g. searching on the mesh) is time consuming,
examples of these case are given when GRASPIT! simulator [37]
is used to generate the grasps, and depending on the size of the
object point cloud the grasp hypothesis can take minutes. For
real applications on a robotic hand, the mesh would first have
to be computed, followed by additional computations of stable
Algorithm 1: Object components segmentation algorithm
based on major axis analysis
1 Input: Object Point Cloud= P;

2 ∀P(x, y, z, r, g, b) = P i ∈ P, search for the points with
maximum and minimum coordinates values in each axis
{x, y, z}, and build the vectors:
ex = {xmax, xmin}, ey = {ymax, ymin}, ez = {zmax, zmin} ;

3 ∀e compute their magnitudes (∥ex∥,
ey, ∥ez∥);

4 Compare the magnitudes of the vectors ex, ey, ez and keep
the biggest one considering its reference x or y or z as the
major axis a ;

5 Verify the object size (in distance, e.g. cm) in the major axis,
and search the regions Top: Rt ; Middle: Rm and Bottom: Rb,
by computing the boundaries Bt ,Bm,Bb as demonstrated in
Eqs. (6)–(8).

6 Segment the object by labelling the points in red if P i ∈ Rt ,
or in blue if P i ∈ Rm or in green if P i ∈ Rb by computing Eqs.
(3)–(5).

7 Outputs: Object Segments (top, middle and bottom)= Ptop,
Pmid, Pbot

grasping regions. In our case, by segmenting the objects into three
components, we can approximate each segment by a geometrical
primitive (e.g., quadrics) allowing an association with previously
observed candidate grasps for each geometrical primitive. Cases
of non-elongated or small objects, for instance, a cube and a ball
are initially considered as a single segment due to its size, and
afterwards they are approximated to a single shape primitive as
a cube and sphere. In these cases of a single segment, the points
around the centroid of the object will be indicated as graspable
region.

We have an implicit assumption that the grasps are adaptive
by using synergies of the fingers [38]. This approach does not re-
quire the association of an exact geometry of the object with exact
grasp geometry, since the given approximated grasp type is dy-
namically adjusted using synergies when grasping. Our strategy of
object decomposition into components does not require a complex
segmentation avoiding high computational processing time, being
sufficient and with high possibility of grasping success for every-
day objects, which justifies our segmentation method.

To evaluate the effectiveness of the proposed segmentation
based on the major axis, we have compared with another method
based on clustering techniques by means of Gaussian Mixture
Models (GMM) introduced in our previous works [36,39] and
presented in the next subsection.



3.1.2. Segmentation based on Gaussian mixture models
In this subsection, we are addressing a segmentationmethod by

means of Gaussian Mixture Models given the object point cloud. It
is another alternative that allows for the search for segments on the
object which are candidate regions for grasping. The estimation of
the parameters (e.g., mean, covariance matrix and weight) of each
individual Gaussian density function (cluster) is accomplished by
the Expectation Maximization (EM) algorithm, also known as EM
clustering, which is an iterative method that attempts to find
the estimator with the maximum likelihood of a parameter. A
global parameter that needs to be set is the maximum number of
clusters kmax. An optimal kmax can be estimated byMDL (Minimum
Description Length) penalty function [40] on the input data. In
our case we pre-set kmax = 3, since we have observed that it is
sufficient for hand-held everyday objects.

Let a set of points (i.e., object point cloud represented by a ma-
trix of points) be P ∈ R3, generated independent and identically
distributed (i.i.d.) by a mixture of k Gaussians, and ℘i ⊂ P rep-
resenting a subset of the point cloud, that is, a specific cluster
j = {1, . . . , k}. Each set or subset of 3D points encloses many 3D
points, P(x, y, z) = Pi ∈ ℘i ⊂ P. The entire set of parameters de-
noted as θ = {(wj, µj,Σj)}

k
j , where µj represents the mean of a

cluster ℘i,Σj represents the covariance matrix and wj represents
the weight of the same cluster, specifies how likely each Gaussian
is selected. The derivation of EM algorithm to estimate the set of
GMM parameters θ , for P (input) and any µj,Σj, is denoted as
Gaussian according to the following expression:

φ(℘i|µj,Σj)

,
1

(2π)d/2|Σj|
1/2

exp

−

1
2
(℘i − µj)

TΣ−1j (℘i − µj)


. (9)

The pdf for the combination of the k models to search for the
most likely combination θ ofmodels to explain the observed data is
achieved by (10). This means a learning of mixture models, so that
we are searching for the combination of the proper clusters that
better describes the input data P, achieving the subset of points℘i,
representing the proper cluster j, where j = {1, . . . , k}.

P(℘i|θ) =

k
j=1

wjφ(℘i|µj,Σj), (10)

wherewj > 0,
j

kwj = 1 and θ = {(wj, µj,Σj)}
k
j .

To summarize the EM algorithm that estimates the GMM
parameters, we apply then the following steps, first compute the
initial log-likelihood, that is used later to check the convergence of
the EM algorithm:

ℓ(0) =
1
n

n
1

log

w
(0)
j φ(℘i|µ

(0)
j ,Σ

(0)
j )

, (11)

where n is the amount of samples contained in ℘i; the initial
estimatesw(0)j , µ

(0)
j ,Σ

(0)
j , j = {1, . . . , k} can be randomly chosen.

During the initialization, we can take some k of the object point
cloud P as the first estimate of the cluster mean, setting the first
estimate of the covariances to be the identitymatrices, and the first
guess at the weights wi = · · · = wk = 1/k, which is common
when using this algorithm. A better alternative commonly used,
and also adopted in ourwork, is adopting theK -means algorithm to
provide a good initialization for the EM. The E (Expectation) step is
achieved by (12). Let γ m

ij be the estimate at themth iteration of the
probability that the ith sample was generated by the jth Gaussian
component (cluster), as demonstrated as follows:

γ m
ij =

w
(m)
j φ(℘i|µ

(m)
j ,Σ

(m)
j )

k
j=1
w
(m)
j φ(℘i|µ

(m)
j ,Σ

(m)
j )

, i = {1, . . . , n}. (12)
Algorithm 2: EM algorithm for estimating GMM parameters
1 Inputs: Object point cloud P

2 Initialization: Choose the initial estimates
w
(0)
j , µ

(0)
j ,Σ

(0)
j , j = {1, . . . , k}, and compute the initial

log-likelihood as demonstrated in Eq. (11).

3 while |ℓ(m+1) − ℓ(m)| > δ (pre-set threshold) do

4 E step: For j = 1, . . . , k, compute γ m
ij and s(m)j as

exemplified in Eqs. (12)–(13)

5 M step: For j = 1, . . . , k, compute the new estimates:
w
(m+1)
j , µ

(m+1)
j andΣ (m+1)

j as demonstrated in Eqs.
(14)–(16)

6 Convergence step: compute the new log-likelihood
ℓ(m+1) as shown in Eq. (17)

7 Outputs: θ = {(wj, µj,Σj)}
k
j

To facilitate the representation of the next formulas, we use a
notational simplification, denoting the total membership weight
of the jth cluster as s(m)j as follows:

s(m)j =

n
i=0

γ
(m)
ij . (13)

Consequently, theM (maximization) step is given by:

w
(m+1)
j =

s(m)j

n
, (14)

µ
(m+1)
j =

1

s(m)j

n
i=0

γ
(m)
ij ℘i, (15)

Σ
(m+1)
j =

1

s(m)j

n
i=0

γ
(m)
ij


℘i − µ

(m+1)
j

 
℘i − µ

(m+1)
j

T
, (16)

where the maximization step is computed for all clusters j =
{1, . . . , k}. Afterwards, the new log-likelihood is computed to
verify the convergence of the algorithm |ℓ(m+1)−ℓ(m)| > δ (pre-set
threshold) as follows:

ℓ(m+1) =
1
n

n
1

log

w
(m+1)
j φ(℘i|µ

(m+1)
j ,Σ

(m+1)
j )


. (17)

All steps mentioned above are summarized in Algorithm 2. More
details about the theory and use of the EM algorithm and the GMM
learning can be found in [41].

Afterwards, each cluster generated by the EM clustering is
represented as a segmented region of the object that can be used
as a candidate region for grasping. Examples of the segmentation
using the GMMmethod are shown in Fig. 6.

The success of the GMM method depends on how the clusters
are generated, taking also into consideration the amount of clus-
ters. Sets with a larger number of points have a significant impact
on the algorithm’s processing time, due to the iteration steps to
estimate the parameters of each cluster. When kmax is defined to
be more than three clusters, then the results for everyday objects
are not so satisfactory, because sometimes an objectwith toomany
segments does not present reasonable candidate regions for grasp-
ing. Some examples of segmentation with little success (based on
a qualitative analysis) are presented in Fig. 7.



Fig. 6. Everyday objects (wii-mote, mug, sponge, bottle, ladle, Nintendo nunchuck and spray bottle) segmentation using GMM clustering. These objects were acquired by
different sensor modalities to test the segmentation. Top row: laser scanner; bottom row and last image (at right): in-hand exploration (bottle, sponge and spray bottle);
RGB-D device (ladle and mug).
Fig. 7. Examples of segmentation of everyday objects with little success using GMM clustering. Some segments cannot be considered as a good candidate region for grasping
(based on a qualitative analysis). Some of the segmented regions are not suitable for subsequent approximation by a geometrical primitive.
Fig. 8. Shape approximation: superquadrics models obtained for the segmented everyday objects.
3.1.3. Discussion of the segmentation methods
Using the segmentation solution based on the major axis

we could achieve satisfactory results for everyday objects. The
algorithm is fast (10 ms on a standard PC) even for an object
point cloud with a large number of points (200 000), unlike other
methods that are more time consuming when the point cloud is
larger. The more elaborated methods [33,25] using meshes based
on Gaussian curvatures try to findmeaningful and functional parts
of the object covering many steps, making it computationally
expensive (taking almost one minute with similar hardware). For
robot grasping applications that require real time processing our
simple method based on the major axis has a clear advantage.



Although the method uses a fixed number of subcomponents
(top, middle and bottom), we could observe that, even in degen-
erate cases, grasp types could be associated with these regions,
thereby allowing the robotic hand to grasp one of these regions.
This algorithm proved to be a fast ad-hoc working solution for
everyday objects. Some tweaking to better define the boundaries
for the segmentation can help dealing with more complex objects,
with more concave or convex regions, or even with many handles,
but other methods indicated above should be used for those cases.
The main problem with shape driven methods that search for ob-
ject functional parts is that the larger the object point cloud, the
longer the processing time, unlike of our approach that will always
have a similar processing time, i.e., independent of the point cloud
size.

3.2. Object shape modelling

Having segmented the object, we nowwant to model each seg-
ment as a basic geometrical primitive. In this work we use su-
perquadrics [42], a technique that models a rich variety of shapes,
and that facilitates computing parameters that enclose impor-
tant cues, such as scale and orientation. Superquadrics has been
used for 3D object modelling [43] and for segmentation of point
cloud [44], in robotics (novelty detection) [45] and successfully in
other works for grasping purposes [21,25,24].

The superquadricsmodels are expressed by a function f : R3
→

R as:

f (x, y, z) =


x
a1

 2
∈2
+

y
a2

2
∈2

 ∈2
∈1

+


z
a3

 2
∈1
, (18)

where ∈1 and ∈2 are the parameters for shape; a1, a2 and a3 are
the scale factors on the {x, y, z} axes. This form provides infor-
mation on the position of a 3D point relative to the superquadric
surface. The implicit function f (x, y, z) partitions the space into
three regions: the point P(x, y, z) lies on the surface if f (x, y, z)
= 1, if f (x, y, z) < 1 then the point is inside, and outside when
f (x, y, z) > 1. Even if the five parameters of the model are
compact, it allows to deal with a large variety of shapes such as
cylinders, spheres, ellipsoids, parallelepipeds and others. The
shape parameters can be constrained to have, for example, just
convex shapes (when ∈1 < 2 and ∈2 < 2).

The recovery of the superquadrics from a point cloud is rep-
resented in a global coordinate system. Thus, we have another 6
parameters to express the rotation (Euler angles (φ, θ, ψ)) and
translation ((px, py, pz)). The function can also be expressed as
f (x, y, z,Λ), where the set of the 11 parameters can be repre-
sented asΛ = {a1, a2, a3,∈1,∈2, px, py, pz, φ, θ, ψ}, representing
three parameters for scale in each axis, two parameters for shape
variation; and six parameters representing the translation and ro-
tation in each axis, respectively.

After the segmentation process, the set points of each object
component will be approximated by a superquadric shape
primitive. To estimate the parameters of the superquadric model,
the gradient least-square minimization of an error-of-fit function
based on Levenberg–Marquardt method [46] is used as follows:

min
Λ

n
i=1

√
a1a2a3


f ∈1 (xi, yi, zi;Λ)− 1

2
, (19)

where
√
a1a2a3 are constraints used to find the smallest su-

perquadric based on the scale parameters. The power∈1 makes the
error metric independent of the superquadric shape. More details
can be found in [46].

The superquadrics fitting initialization can influence the
convergence of themethod, i.e., the necessary number of iterations
to find the best fitting. In this work, the shape parameters of a
superquadric model are initialized as an ellipsoid, ∈1 = ∈2 =
1, and the object initial pose is based on the centre of gravity
computed from the statisticalmoments. The scale factors are based
on the computed eigenvalues of the computed inertia matrix.

For each object component (segmented region), a superquadric
model is generated. Fig. 8 shows the superquadrics models
generated for the segments of some everyday objects, simplifying
the object parts shape into geometrical primitives.

More parameters can be computed to represent a superquadric
model, the 11 parameters already explained, and further 4
parameters that can be included in this set of parameters, such as
the centroid of the superquadric {cx, cy, cz} and its volume v.

We have limited the set of geometrical primitives that can
compose everyday objects into the following superquadrics
models: box and its variation (roundedbox), cube, cuboid, cylinder,
ellipsoid, sphere, octahedron, spinning-top (squared, rounded and
star shape) and variation 1 of the sphere (arch) and variation
2 of the sphere (butterfly shape). The method smoothly varies
(continuously) the shape parameters∈1 and∈2 to fit the best shape
given the point cloud. These thirteen superquadrics models are
sufficient to approximate and describe a big variety of everyday
objects.

The superquadrics models can represent an object shape even
when the input is a partial volume of the object. For the everyday
objects used in this work, we have achieved results that were
satisfactory and useful for the subsequent grasping synthesis. The
superquadrics modelling for a point cloud acquired from an RGB-D
sensor in average takes less than one second up to three seconds if
the point cloud is too dense (e.g., when acquired by a laser scanner
sensor, which it is not the case here) using a standard computer
(e.g., a Laptop with Intel core i3-3500M processor, 2.26 GHz, 4 GB
DDR3Memory). The precise processing time depends on the object
point cloud that varies in shape and size.

We are using the superquadrics modelling to approximate an
unknown object shape into a familiar geometric primitive, thus
simplifying the huge amount of candidate grasps for this familiar
shape. This will reduce the grasp space into the learned grasp
(hypothesis) for that familiar shape since we are learning grasp
types for a set of geometrical primitives. Decomposing the object
into parts will give hypothesis of grasping the object in its different
segments.

4. Learning from human grasp demonstrations

In this section we address the learning from human grasp
demonstration thatwill assist the grasp hypothesis generation. The
learning strategy is based on our previous works [36,47].

The learning phase follows a probabilistic approach, and in
general finds a model that describes the dependency of one
random variable on another one. Let qi ∈ Q , i = {1, . . . ,N} be
possible object regions (quadrics) and gk ∈ G, k = {1, . . . ,M}
be the possible grasp types, then the dependency is defined by a
conditional probability distribution P(Q |G) that is the probability
density function (pdf ) of a random variable representing one of
the target classes given the randomvariable representing the input
vector (features). In other words, this means that, given the space
of possible inputs Q and the possible targets space G, an estimate
of the class that encloses the input space is given by a classification
model resulting P(G|Q ).

The human grasp demonstrations result in a dataset D with N
labelled examples coming from the learning phases as presented
subsequently in the following subsections. An example of a
labelled dataset is given by the possible candidate grasps G
associatedwith each quadric qi representing an object region. Each
grasp type can be found using the hand fingertips 6D data in the



Fig. 9. Overview of the learning process assisting the inference to search for candidate grasps for a given object model.
wrist coordinate system, forming a hand configuration. From the
observed data, inferences can bemade to assist the grasp synthesis
to estimate possible grasps given a quadric model, or to search for
possible candidate regions on the object to performa grasp, or even
the candidate regions on the object given a task context T . The
inference models are based on Bayesian techniques that will be
explained afterwards.

Fig. 9 depicts an overview of the learning and inference
strategies adopted in this work. In the next subsections, the steps
for learning and inference based on human grasping experiences
will be described.

4.1. Overview of Bayesian inference using the learned data

A general explanation of how we perform inference adopting
Bayesian theory is given in this subsection. Later, in the following
subsections, wewill show themodels we have defined that use the
likelihoods useful for our grasp synthesis system, taking decisions
on which are the most probable grasps and suitable regions for
grasping given the object model.

Probabilistic techniques such as Bayesian theory is used to
support the decision given the learned likelihood. A strong
assumption is that all inputs are mutually independent of each
other given the class label (e.g., grasps types associatedwith object
regions under a task context). When adopting a Dynamic Bayesian
Network (DBN) for the learned likelihood, the joint probability
distribution is represented as a set of random variables. The
set of parameters in a DBN encloses the conditional probability
distribution of the random variables and the learned probability
tables. Then using the Markov condition, each node is stated
as independent of its non-descendants given its parents. Fig. 10
presents a general example of an application in a grasp context
to better understand the models. It represents the probability of
a grasp type happening when some events occur, such as when
the artificial system finds a specific object region, represented as
a quadric qi, and inside of a task context T . The events (parents)
represent the set of parametersQ ,T that trigger an effect (nodeG).
The DBN can be used as a classifier that gives the posterior
probability distribution of the class node G given the values of
other attributes (set of events). The model represented in Fig. 10
can be expressed as the posterior distribution P(G|Q ,T ) given the
observations enclosing the random variables Q , T as follows:

P(G|Q ,T ) =
P(Q ,T |G)P(G)

j
P(Qj,T |G)P(Gj)

, (20)

then, using the MAP estimation argmaxgk∈G P(G|Q ,T ), we have
the classification result. Over time themodel presented in (20) can
be stated as P(G|Q , T ) =


P(Q ,T |G)P(G) due to the iteration,

i.e., while new observations are coming from the readings. The
dynamics in the BN is when the system’s state at time t depends
only on its immediate predecessor t − 1. The time instant t of the
system evolves over time according to the system dynamics that is
specified by the conditional density function P(Gt+1|Gt). Initially,
in our model, the prior is a uniform distribution, and over time the
previous posteriori becomes the next prior, updating this way the
model by taking the previous knowledge into consideration.

The general models mentioned in this section were given to
exemplify the techniques adopted for inference using the learned
data to assist the grasp synthesis. The learned likelihoods used
in this work were built based on histogram techniques. The idea
is to rely on statistical data to achieve a successful estimate. The
learning phases and inferences used in our artificial system are
explained in the next subsections.

4.2. Experimental setup for data acquisition

In this work, the human demonstrations play an important role
in the ability of learning and identification of how to grasp objects.
The experimental activities with humans executing grasping tasks
are performed in our experimental area with multiple data
acquisition devices (Fig. 11) in order to capture how humans
perform successful tasks. The data acquired is used to model and



Fig. 10. A Bayesian network to represent a general model when a grasp type is estimated given some causes Q ,T . The image at the top row shows a simple BN with naive
assumption (the children nodes are independent from each other). The bottom image is a representation of a dynamic process with two time slice. This model assumes that
the attributes in different time slice are independent from each other given the class variable. This assumption implies that the temporal dynamics is captured at class level
only. Even though, another network might be modelled with a more complex structure where dependence among all nodes can happen.
Fig. 11. Sensors used in our experimental setup: RGB-D camera (MS-Kinect), Polhemus Liberty Magnetic Tracking System, Cyber-Glove and Tekscan Tactile sensors.
extract the relevant aspects of the human demonstration, as well
as providing input for themethods presented in thiswork. For that,
we are reading data from two perspectives: the human hand and
the object. In the first case, finger 6Dposeusing amagnetic tracking
system and the tactile forces distributed on the inside of the hand
are used for the object, a point cloud model is used, obtained
from in-hand exploration, as shown in previous works [36], from
RGB-D camera and also off-line from a laser scanner sensor. An
online database, the Handle Project Data Collection Database [48],
is publicly available with the datasets collected.

4.3. Learning object graspable regions: assigning weights to shape
primitives

In this section we address how to assign a weight (based
on human statistics) to an object shape primitive for an initial
grasping, ignoring for now the task context. The objective is to
search for the shape primitive that has assigned more weight
(between the three components of the object) to describe this
region as suitable for grasping.

Through the human grasp demonstrations, we analyse the
human choice to find the object graspable component given the
three geometrical primitives that compose the object shape. We
are biasing the geometrical primitives using the statistical data
by quantifying the human grasp demonstration with a probability
distribution based on histogram techniques. This way, given an
unknown object and its three components, we will have weights
distributed for each primitive to knowwhich one is the best part as
a candidate region for grasping. Afterwards,wehave built a learned
tablewith the information of primitives preferences based on their
weights. Adopting a verification of dual-combination of shapes, we
verify the object components weights to know which component
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Fig. 12. Examples of the statistical data acquired during the human grasp demonstrations. The statistical data assists to weight the geometrical primitives as preference for
grasping when dealing with a specific pair of quadrics.
is the graspable part, by comparing the weight of the first object
component with the second, later the component with the bigger
weight from the previous verification is compared with the third
component of the object. The learned table from the observations is
a probability table of a dual-combination of geometrical primitives,
so that later an estimate can be made to select which part of the
object is the best one for graspingwhen the grasp synthesis system
faces different geometrical primitives on the object.

A heuristic rule is also used for biasing the geometrical primitive
representing the bottom part of the object if its pose is in a vertical
position, which decreases its probability of the most suitable
region for grasping. If the object pose is in a horizontal position,
then this rule does not apply to the bottom part, because it can
be a candidate for grasping in the same way as the other object
regions.

During this learning process, we analyse the human preference
for grasping given a set of primitives that can compose an object. A
questionnaire was made to find out the human’s choice given two
shapes primitives. A set of geometrical shapes was shown to the
subjects, and they were instructed to point (grasp) the shape that
is the graspable choice (easier to grasp or could be grasped inmore
different ways than the other one) in the subject’s point of view.
The primitives used to observe the human’s choice are the set of
the defined superquadrics for this work as described in Section 3.2.

The set of shapes were shown to each subject (demonstrated
two shapes per time), and to facilitate the human choice, the
subject could grasp and interact with both shape primitives, and
later the subject had to decidewhich one is preferable for grasping,
if those two shapes were part of a single object. A system was
developed (questionnaire) showing the two shapes that were
demonstrated, and the subject should register in the system his
choice (primitive 1 or primitive 2). An incremental function was
computed for eachprimitive to build a histogramdistribution. Each
subject registered the choice for all possible combinations of the
set of defined primitives.

The learning is achieved given the shape primitives (also
referred to as quadrics qi) that compose an object, so that they are
labelled when a graspable choice is made, for later computing the
distribution of each labelled primitive. The histogram is computed
as follows:

n =
k
i

Hi, (21)

where Hi is a function that counts the number of observations
that fall into each of the disjoint categories c representing dual-
combination of the possible qi (e.g., given an object, its components
in dual representation is q1, q2 and qi, q3, where qi can assume the
form of q1 or q2); k is the total number of categories and n is the
total number of observations. Then the normalization to compute
the probability distribution is achieved by:

P(ck) =
nk

N
, (22)

where 0 ≤ ck ≤ 1 (normalization of each category ck, i.e., combi-
nation of quadrics); 0 ≤ k ≤ K − 1, where K is the total number
categories; N is the number of observations; nk is the number of
observations for each category; P(ck) is the probability of the kth
category.

Fig. 12 shows some examples of the statistical data represented
in histograms. In this figure we can see some histograms of pairs of
quadrics and the distribution of preference between both. We can
also verify an example of the choice (preference) for the graspable
quadrics when given a set of quadrics.
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Fig. 13. Probability Distribution in the Learned Table: Pointing the preference given a pair of quadrics qi–qi, i = {1, . . . , n}. The axes {x, y} represent all possible pairs of
quadrics qi that can compose an object. The probability assigned for the pair of quadrics is shown through the colour-map.
From these observations and statistics we could build a
probability table (histogram), representing a learned table, as
presented in Fig. 13. To read this learned table, the axes {x, y}
represent the possible pairs of the geometrical shapes (quadrics)
that can compose a given object. The probability is assigned to the
quadric qi in x axiswhen itmakes a pairwith qi in y axis. The colour-
map varies from 0 to 1 representing the probability (weight) of
each quadric qi.

Later an inference for an object graspable region can be made,
taking into account the quadrics that form the object, as demon-
strated next.

4.3.1. Inference for object graspable region given the object shape
primitives

We now address how to perform an inference to find the most
probable graspable region on the object given a pair of primi-
tives. The learned table presented in Section 4.3 (Fig. 13) is used
as likelihood in a Bayesian inference to update the probability of
a graspable region of an object given the combination of quadrics
(e.g. given the sequence of the components/quadrics qi that com-
pose an object: q1 and q2, q1 and q3, q2 and q3), we can identify the
graspable region for an initial grasp type (not taking into consider-
ation the task context).

The model for inference is given by:

P(Q = qi|ck) =
P(ck|Q = qi)P(Q = qi)
j
P(ck|Q = qi)P(Q = qi)

, (23)

where P(Q = qi|ck) is the probability of the object graspable
region qi given the combination (pair) of quadrics ck. Then the
classification is achieved according to the maximum a posteriori
(MAP) estimate.

4.4. Learning suitable objects graspable regions in task-oriented
grasps

This learning process is based on our previous work [39] to
identify graspable regions on objects that are suitable for grasping
given a task context. We are also using this learning process for a
more consistent estimate of graspable regions to assist the grasp
synthesis when the system is under a task context. The idea is
given an object model and task context, using the knowledge
learned from human grasp demonstrations, the artificial system
can estimate the best region (primitives) to perform a proper grasp
for that situation. In this specific learning process, we have adapted
our previous work with improvements for the grasp detection
given the contact points on the object surface to quantify the
human graspable choice.

In order to estimate the object region as graspable given
a specific context (task-oriented), the combination of human
demonstrations of stable grasps and object intrinsic information
play an important role in the decision. In the learning process,
we have the 3D object model of the object in a volumetric map,
so that we can overlay the contact points of stable grasps on the
object surface, represented in the grid cells of the objectmap. It also
allows the identification of the grasp type by analyzing the contact
points locations forming the hand configuration. The probabilistic
representation of the object shape using a 3D map was proposed
in a previous work and details can be found in [35,36].

For the human grasp demonstrations we are using from our
experimental setup (Fig. 11) the finger 6D poses using a magnetic
tracking system, and the tactile forces distributed on the inside
of the hand. Thus, with the volumetric information of the object
we can overlay the contact points given by human demonstrations
on the object surface. The contact points locations are given as 3D
positions of the fingers (acquired by the magnetic tracker sensors)
when a subject touches the object (i.e. the tactile sensors are
active). The contact points locations are easily overlaid on the
object surface (cells in the object map), since we are working in
the same frame of reference of the magnetic tracker allowing to
map the contact points on the object surface. We consider that the
system has previously acquired a 3D model of the object by in-
hand exploration or othermodality (e.g. vision) in order to have the
volumetricmodel representation. Fig. 14 showexamples of contact
points overlaid on the objects surface. The figure presents an object
grabbed by a human subject with a successful stable grasp during
a manipulation task.

In this work, we canmanually label the grasp type by observing
the hand configurations during the grasp execution, or even in an
automatic way, by computing the hand configurations using the
contact points on the object surface. To automatically identify a



Fig. 14. Examples of contact points of stable grasps from human demonstration on the object (spray bottle) surface using the object occupancy grid (probabilistic map).
grasp type,we rely on the fingertip 6Dpose relative to thewrist. For
this, an additional tracker sensor is placed on the wrist. This allows
us to compute the hand configurations defined in the grasp list [1].
To have the fingertip 6D data in the wrist frame of reference, we
compute for each fingertip f = {x, y, z, roll, pitch, yaw} (contact
points) the following step:

fnew = {(fx − wx), (fy − wy), (fz − wz ),
 αw, βw, γw}, (24)

where f represents each fingertip in {x, y, z} (in the frame of
reference of the tracker sensor) and w the wrist coordinates;
αw, βw, γw are the angles roll, pitch and yaw of the wrist.

Later, the grasp type detection by using contact points on the
object surface is achieved based on the transformed data repre-
senting a hand configuration. A grasp type is identified as a squared
mean distance value between the fingers as shown in (26). Asmen-
tioned before, the grasp type used in this work are the ones de-
fined in the grasp list adopted from [1], so that each discrete grasp
type has an identity by using the hand configuration as explained
next. First the Euclidean distances between thumband index finger
are computed, followed of the distances of the thumb and middle,
thumb and ring, thumb and little, index and middle, middle and
ring, and finally ring and little.

Dν =
1
N

N
k=1

(dpq)2k, (25)

where dpq =

(px − qx)2 + (py − qy)2 + (pz − qz)2, and p, q

represent two fingers (thumb and index, and so on). Given a new
observation of stable grasp, after computed the contact points dis-
tances, we can associate it to a pre-defined grasp by a similarity
measure to search for the closest grasp:

ĝs = min
i∈{1,...,N}

f (ĝs) = |Dν − ψi|, (26)

where Dν is the mean distance computed given the contact points;
{ψ1, . . . ψn} are the grasping thresholds, i.e., each grasp is repre-
sented by a ψ value. Many observations (different subjects) of the
same grasp value were computed (26) and an average for ψ was
achieved to represent a learned grasp. The result ĝs is the grasp
that will represent a new observation of contact points.

The grasp detection steps are presented in Algorithm 3. Fig. 15
shows some grasps types identified for an object used in the
demonstrations.
Fig. 15. Examples of grasps that were identified for the spray-bottle given the
contact points (from human demonstrations) on the object surface.

After some trials of human demonstration on how to grasp an
object given the objects models and the context, we could build
a probability table to distinguish what kind of grasping is more
probable to happen in each specific situation and also the object
region that was chosen for the grasping.

Given a set of observations to represent a specific task T , for
instance, some simple tasks T ∈ {pick-up and place; pick-up and
lift; pick-up and pour/tilt}, we have the probability of each grasp
type in a specific context represented as P(G|T ). The probability
of each grasp type gk ∈ G, k = {1, . . . ,M} in a specific context is
given by the frequency of observations as expressed below:

P(G = gk) =
o
M
, (27)

where o is the number of occurrences for the specific grasp type gk
andM is the total number of possible grasps G.

To identify the object graspable region, we verify the locations
of the contact points on the object surface, and that region where



Fig. 16. Statistics computed from the observations. Three different tasks performed many times by 5 different individuals. By analyzing the probability distribution of the
chosen primitives to perform the grasp, the object graspable part (given the task context) can be estimated.
Algorithm 3: Grasp type detection
1 Inputs: 6D fingertips contact points (acquired when the
tactile sensors are active, i.e. touching the object)

2 For each fingertip: Compute a transformation of the fingertip
6D data f = {x, y, z, roll, pitch, yaw} into the wrist
coordinate system as demonstrated in Eq. (24);

3 Compute the Euclidean Distances d between the thumb
fingertip and the other 4 fingertips:
d(t, i), d(t,m), d(t, r), d(t, l), t = thumb, i = index,m =
middle, r = ring, l = little;

4 Compute the Euclidean distance between the other fingertips
d(i,m), d(m, r), d(r, l);

5 Compute the grasp value by an averaged sum of the squared
Euclidean distances between the fingertips
Dν = 1

n

n
k=1(di,j)

2
k;

6 Search for the minimum distance Dν and the learned
grasping thresholds {ψ1, . . . ψn}, by computing a similarity
function ĝs: mini∈{1,...,N} f (ĝs) = |Dν − ψi|

7 Output: Grasp type

the points are located represents a quadric model qi (component
of an object). Given a set of observations to represent a task T ,
we have the probability of each object component being the object
graspable region P(qi|T ). It is computed in a similar way as shown
in (27) where each component of the object has a probability as-
sociatedwith the graspable region given the context by computing
the occurrences based on humans’ choices for the object region de-
fined as graspable.

Fig. 16 shows some statistics computed after the human
demonstrations for the chosen object graspable component for a
few everyday objects (mug, bottle and wii-mote).

4.4.1. Inference for object graspable region in task-oriented grasps
The object graspable region can be identified applying the

Bayes’ theorem. Given a task context T , to identify the object
graspable region between the primitives that compose the object
{q1, q2, q3} as explained in Section 3, first it is necessary to
detect the object components represented by quadrics models qi.
The probability distributions are obtained from the occurrence
statistics acquired during the learning process used to build the
likelihood.

Given a context T , we can estimate the object graspable part qi
as follows:

P(Q = qi|T ) =
P(T |Q = qi)P(Q = qi)
j
P(T |Q = qj)P(Q = qj)

, (28)

where the posterior information P(Q = qi | T ) is computed for
each primitive qi of the object in a specific task T ; the likelihood
P(T | Q = qi) is the learned probability for each primitive of the
object given a task context as previously explained. The normal-
ization factor is the sum of the probability of each object primitive
being the graspable region.

A basic example of this application is given during the grasp
planning, when a robot needs to execute a task. After detecting
the object and its geometrical primitives, the robot can identify
the object graspable region for possible suitable grasps, using the
learned information from human demonstrations.

After learning a set of objects and task context, when the ob-
ject is observed again in the same context, the system is able to
detect the graspable part as shown in Fig. 17. The graspable com-
ponent is chosen according to the maximum a posteriori (MAP)
estimate. In these specific examples, we have used just two com-
ponents due to two reasons: (i) the third component for these spe-
cific objects had zero probability or a very low probability assigned
to the third component inside the specific context; (ii) these spe-
cific objects still have a good representation evenwith two compo-
nents. Indeed, just for a better visualization of the results for these
specific objects inside these specific contexts, we have adapted the
results showing only the two more expressive components of the
object. In a real situation, we keep the three components of the ob-
ject, even if one of the components has a zero probability assigned
to it.



Fig. 17. Identification of the object graspable component for the sponge, wii-mote, spray-bottle, mug and bottle. For these trials we have used only two components for
each object. Each component has a probability of being graspable, the maximum a posteriori estimate indicates the graspable component in each context.
In case of unknown objects, we have adopted a generalization
process, reusing the prior knowledge for other contexts, for
instance, if a unknown object has one primitive in common with
a known object, a similar grasp can be attempted. The unknown
object is in part matched a familiar object, i.e. after the object
segmentation process, this object will have known geometrical
primitives. Given a task, a Bayesian classification as shown in (28)
is computed for each object primitive to infer the most probable
object primitive for that task.

The feasibility and the quality of the work is somehow depen-
dent of how a given object is represented after the segmentation
and how its components arematched to a specificmodel. Thisway,
the system can generate the hypotheses of regions on objects being
graspable, and for each primitive a set of grasp types is associated.

4.5. Learning grasping choice from human observations

From human grasp demonstrations we can also observe the
grasps types that are assigned to the object regions. This way, we
can build a set of possible candidate grasp types to a specific object
or for specific geometrical primitives that compose this object.

The learning process is achieved given a dataset with labelled
examples of grasps types associated with an object component.
Since we have the grasp detection and object components detec-
tion, we can learn and associate a set of grasps with each geomet-
rical primitive that can represent an object component.

Through histogram based learning, we quantify the probability
table containing a set of grasps for each quadric.We have observed
some grasps by humandemonstrations for the defined geometrical
primitives. It means that n grasps can be mapped to a specific
shape, i.e., G = {gk, . . . , gm} → qi. Afterwards, a selection of the
more probable candidates grasps for each geometrical primitive
based on the probability distributions can be made.

The probability table that was built in this learning process can
be seen as a 3D histogram, where each quadric qi (in axis z) has n
grasps G (in axis x) with probabilities associated with each grasp
(axis y) to be the most probable grasp for each quadric qi. In this
learning process, for each random variable, the distribution was
normalized given the respective occurrences computed in a similar
way as previously shown in (27).
In our framework we use taxonomy of grasping with a set of
33 grasp configurations. Since for many everyday activities the
number of distinct objects is limited, we can have some non-
observed grasp types. This happens because some of them were
designed for more complex tasks of in-hand manipulation or fine
movements, and not only for the initial grasp that is our focus here.
In hand grasp transitions would require many more observations
to achieve a representative distribution. In our learning approach,
using a histogram-based technique, some featuresmight have zero
probability, because they have never been observed, i.e., a few
grasps were never applied to some specific shape. These cases can
be dealt with using the prior state of knowledge described by the
rule of succession (Laplace’s law of successions). The knowledge
is given as an enumeration of the possibilities, with the additional
information that it is possible to observe each category. The idea
behind it is to assign a minor probability to the non-observed
grasps avoiding a zero probability. Whenever these features with
zero probability occur in the classification step, the correspondent
hypothesis will receive also a zero probability. Since for the
inference, the classifier is continuous, based on multiplicative
update of beliefs, when the features from the likelihood with zero
probability are used, these zeros might lead to a definite out-rule
of hypothesis. To avoid this problem, a minimum probability for
non-observed evidences is produced using the rule of succession
as indicated:

∀ni = 0, Pmin([ni = 0]) =
ni + 1
N + χ

=
1

N + χ
, (29)

where Pmin([ni = 0]) is the resulting minimum probability that
will be assigned to the non-observed grasping (ni = 0); χ
represents the total number of features (i.e., all possible grasps
types, G = 33); ni is a specific feature (in this case ni = 0, the
non-observed grasps); N represents the total of occurrences (sum
of all features occurrences).

The probability table gives us the likelihood useful for estimat-
ing both P(G|Q ), probability of a grasping occurring given a ge-
ometrical shape, and P(Q |G), probability of a geometrical shape
given the set of grasp types. However, in our specific case, we rely
on the statistical data to associate the most probable grasps with
each quadric, using their probabilities as weights to set the prefer-
ence of the candidate grasps.



Fig. 18. Grasp choice given the object quadrics: statistical data acquired by human demonstrations. The demonstrations were chosen from a grasp list [1] with 33 grasp
types for 13 possible quadrics models Q = {box, cube, cuboid, cylinder, ellipsoid, sphere, octahedron, rounded box, rounded spinning-top, squared spinning-top, star spinning-top,
variation 1-sphere(spherical arch), variation 2-sphere (butterfly shape)}.
Fig. 19. Probability distribution: learned table from the statistics presented in Fig. 18. Each grasp type has an occurrence probability given a quadric model.
Fig. 18 shows the raw data representing the statistics from hu-
man demonstrations where 10 subjects, 9 man and 1 woman, all
righted-hand, aged between 22–33 years old, demonstrated for
each quadric the most probable grasps (from the grasp list [1])
with aminimum of 1 up to 10 grasps. The 10 subjects have demon-
strated for the defined superquadrics models of this work, a total
of 510 demonstrations (possible grasps). From this data we could
verify different statistical information, such as the preferences and
the mode of the samples. For instance, the superquadrics models
that had more associated grasps were: cylinder, box, cube, cuboid,
sphere. The grasps with more frequency during the demonstra-
tions: g27-quadpod, g13-precision sphere, g1-large diameter, g3-
medium wrap, g31-ring.

Fig. 19 shows the learned tablewith the probability distribution
after a normalization of the statistical data, which is useful for
inference. The normalization for the likelihood is achieved by
P(Q |G = gk) =

gok
M where go

k is the occurrence of a specific grasp
gk during the human grasp demonstration and M is the total of
demonstrations (all possible grasps) for a specific quadric qi.

4.5.1. Inference for grasping choice
The inference over the learned table presented in Section 4.5

(Fig. 19) is represented by two possible questions: first P(G|Q )
meaning the probable grasp given one or more quadric model
representing an object, and second P(Q |G) meaning the opposite,
the most probable quadric model given a set of grasps. The first
and second inference are computed adopting Bayes rule since we
know the likelihoods and priors. The Bayesian inferences are done
as follows:

P(G = gk|Q , s) =
P(Q , s|G = gk)P(G = gk)
j
P(Q , s|G = gk)P(G = gk)

, (30)

P(Q = qi|G, s) =
P(G, s|Q = qi)P(Q = qi)
j
P(G, s|Q = qi)P(Q = qi)

, (31)

where s represents a set of information (temporal), for instance:
for (30) a set of quadrics to update the probability of the candidate
grasps for an object composed of n quadrics; for (31) a set of grasps
to update the probability of the possible quadrics.

The prior P(G) in (30) is obtained from another distribution
function (probability table) as presented in Section 4.3. The prior
P(Q ) in (31) is a uniform distribution.

4.6. Learning from object observations

More information is extracted when dealing with the object
model. Through observations of object components, after the



Fig. 20. Spray bottle — probability distribution of qi being considered as an object component ci .
detection given a point cloudP from a specific sensor, we also learn
and build a probability table by analyzing some statistics. Adopting
the same strategy of histogram based learning as explained before,
we have built for each everyday object, a probability distribution
taking into consideration the components of the object. Given a set
of quadrics Q we have the probability distribution of each quadric
qi being the component of the object (i.e., belonging to an object
region, such as the top, middle or bottom).

Fig. 20 shows an example of a probability table of a specific
object (spray bottle) demonstrating the probability of each quadric
qi being an object component. The samewas done for other objects.

Later an inference can be made to identify an object as
demonstrated in the next subsection.

4.6.1. Inference for object identification
The inference to identify an object given the sequence of

quadrics qi following the order {q1, q2, q3} is computed for all
variables (i.e., all possible objects identities) using (32), and each
one has a likelihood (Fig. 20) representing the learned components
of an everyday object. The identification is computed as follows:

P(O|Q , s) = βP(Q , s|O)P(O), (32)

where P(O|Q , s) is the probability of an object identity given the
sequence of quadrics representing each object component; β is
the normalization factor, β = 1

P(Q ,s|O)P(O) meaning the sum of
all likelihoods (learned table for all objects) for those 3 object
components detected; s represents the sequence {1, 2, 3} of the
detected quadrics.

With the learned information and using the inference for a
limited set of objects,we have built a table containing the inference
results, so that when the artificial system faces a novel object,
it can detect a combination of 3 quadrics to identify the object
or at least reasoning that it might be similar to one previously
observed. Identifying an object is another alternative to find a
graspable region, as well as grasp associated with this object or its
components to find the candidate grasps.

4.7. Storing learned data

Since we have a limited number of objects, object components
modelled with superquadrics models, task context and grasping
types, we can restrict all possibilities of one or more random
variables using the inference results and the learning data.

We have built tables storing the learned data, as well as tables
with the inference results for the set of possibilities from the
learned data. We can use this information to generalize, and apply
in other contexts, or in case of grasping or objects, we can use
similarities, i.e., find themost similar one to apply in a new context
or to an unknown object.

This process was done in order to have sufficient data stored
to facilitate and speed up the processes for a real time application
during the execution, reducing then the processing time, since
we want a system working in a feasible time for our application
that can also be incorporated in other context (e.g., for in-hand
manipulation tasks with grasp transitions).

5. Grasp synthesis

The main purpose of the grasp synthesis is to find feasible
grasps, given a 3D object model, and the robot end-effector
configuration to maintain a stable grasp during the execution.
Therefore, to accomplish this task, we first need to use the object
characteristics to find the proper region for grasping, as well as
the pose and configuration of the hand relative to the object
to approach the object and successfully grasp it. Thus, we have
developed an artificial systembased on the idea presented in Fig. 1.
The experimental robotic system was a joint effort built within
the HANDLE project consortium [49], and ROS (Robot Operating
system) was used to combine contributions from all the project
partners to have a working system. This work is one of the
contributions integrated in the project. In the next subsections the
modules that comprise the grasp synthesis system architecture are
presented, as well as the details of the system implementation.

5.1. Using decomposition module in the grasp synthesis

The decomposition is used for the grasp synthesis objective.
As explained in Section 3, given an object point cloud (unknown
object), we first decompose the object into key components and
later, inferences on the learned data to detect suitable regions for
grasping and the proper configuration are made, as explained in
Section 4.

In thisworkwehaveused as a pre-processing step in our system
a ROS module named Extract Objects and Table developed by the
HANDLE project consortium [49]. When the object point cloud is
acquired by an RGB-D sensor, by using the ROS algorithms from
the PCL (Point CLoud Library) [50], we can extract the segmented
object point cloud, removing the table and background. The object
for manipulation is placed on the table in the sensor range.
Algorithms like RANSAC (RandomSample Consensus) [51] are used
to remove the tabletop, removing the non-interesting regions of
the point cloud resulting only the object point cloud or a cluster of
objects in case of many objects.

Another important pre-processing addresses the problem of
the partial object view provided by the RGB-D sensor. Within the
ROS HANDLE modules, a PCA-based method is used to fill out the
object partial view into a symmetric shape, passing to our system
a point cloud of the complete object. PCA provides the main axis of
the point cloud, upon which an ellipsoid fitting is made to enable
filling out the object, providing a final object point cloud using an
object centred frame of reference. The major axis, the one with



Fig. 21. Frame of references adopted to generate the grasps pose relative to the object pose.
Source: Figure adapted from HANDLE Project Wiki page for the definitions of the ROS modules for the final demonstration of the project [49].
larger magnitude, will be the axis along which we perform our
segmentation.

Following the ROS structure, the nodes communicate between
each other by publishing messages to topics. A message is a simple
data structure including types or arrays similar to the structures
defined in C/C++ programming. The nodes were implemented
in C++ (OOP — Object-oriented programming) adopting the ROS
architecture. The object point cloud is then passed as a message
to the Decomposition module. Then in the segmentation step, the
object is converted into a new frame of reference (object-centred).
The inputs for the second node of the Decomposition module
(shape approximation) is a table of object segments (e.g., the
segments Ptop, Pmid, Pbot) that was published as a message to a
specific topic by the first node (segmentation). The output of this
second module is a published message into a topic containing
the 15 parameters of the superquadrics model, representing the
scale in each axis {a1, a2, a3}, two parameters representing the
superquadric shape {∈1,∈2}, three parameters representing the
translation {px, py, pz} and three angles representing the rotation
{φ, θ, ψ} in each axis, aswell as the centroid coordinates {cx, cy, cz}
and the volume of the quadric vq.

In the second node, since we obtained the object pose and size
by the computation of the superquadrics models, we can use the
extracted information to generate the candidate grasps for each
quadric qi of the object based on the learned data.

5.2. Grasp synthesis module

This module is in charge of searching for the proper candidate
grasp, returning a list of grasp hypothesis given a 3D object model,
aswell as the correct handpose to approach the object for grasping.
All learned data that was stored are used in this module to assist
the grasp generator to make inference over the data, as mentioned
in Section 4. In our approach we decided to store the learned data
and some inference results over some pre-defined situations such
as grasp types associated with some geometrical models to gain
time, reducing in thisway the processing time. Laterwith the grasp
type for a given object, we have to compute the hand pose relative
to the object for the grasping execution.
The developed artificial system will always face an inference
given the object information, these possible inferences were
previously described in Section 4, which demands the use of the
learned data from human grasp demonstrations for the estimate.
The next subsection will present more details on the grasp list
generation.

5.2.1. Grasps list generation
When the artificial system receives the inputs coming from the

decomposition module, the objective is to then have the candidate
grasps for each part of the object. The superquadrics parameters,
the object centroid, object pose and scale (in the metrical
superquadric coordinate system) are computed as presented
in [46]. This way, we know the object orientation and the limits
of the object (width, height and depth), which allows the system
to generate the possible candidate pre-grasp and the grasps near
to the object boundary.

A discrete space-state is used as defined in the HANDLE
project [49] for the frames of references (world for robot platform
base, robotic hand and object) as presented in Fig. 21. The hand
approaches the object based on the object boundary, computed
using the object centroid and the superquadrics parameters (size).
The hand pre-grasp is denoted as the initial robotic position,
usually behind the object (robotic platform point of view). The
distance from the pre-grasp is computed from the origin of the
hand (centre of the palm) to the object boundary. The natural hand
configuration (open hand) is the pre-grasp (one state before the
selected grasp configuration).

Having computed the object pose during the decomposition
module, the system then searches for the possible candidate grasps
for the detected superquadrics. Afterwards, for each grasp, the
hand pose relative to the object is computed at pre-grasp (neutral
state before grasping) position and also for the selected grasp after
inference. We set the pre-grasp position of the hand away from
the object (behind it) with neutral state (open hand) as shown in
Fig. 21.

The hand pose for each grasp type is computed for the top and
side-grasp orientation relative to the object pose. The approach
direction is dependent on the graspable region thatwas chosen and



Fig. 22. Transformation diagrams for getting the grasp pose in relation to the object frame of reference.
taking also into consideration the object size and if it is symmetric
in its shape. Then the approaching direction on the objectwill be on
its top or side direction around the centroid of the chosen compo-
nent for grasping. The hand kinematic is also important, e.g., when
the graspable choice is on side-grasp orientation for a specific grasp
type, if the object is symmetric the approach can be performed on
the right side of the object or in its frontal side (robotic platform
perspective). The approaching direction is also dependent of a task
context; usually the top-grasp pose approaching direction is the
chosen one for simple tasks like pick-up and place. Some grasps are
limited to the side position, such as adducted thumb or medium
wrap, used for example, to grasp a pipette by its side when it is
placed on a vertical stand.

To generate the hand pose in top and side positions, the object
pose and size, the frames of reference of the object and the hand are
taken into consideration. The robotic platform consists in several
joints and links as seen in Fig. 21 (Shadow dexterous Hand [2]).
A proper frame of reference structure was defined and thus the
relations between the Shadow dexterous hand and object need
to be calculated. In Fig. 22, the relevant frames of reference is
specified and the transformation details are presented. The final
goal for getting the transformation matrices was to be able to
set the correct grasp pose of the hand relative to the object.
The following expressions define the side and top grasp poses
transformations respectively:

OTS =
OTH

HTR
RTS, (33)

OTT =
OTH

HTR
RTT , (34)

where OTH defines the transformation between the frames of
reference of the Object {O} and a hand wrist {H}; HTR defines the
transformation between the frames of reference of the hand {H}
and the actual frame of reference used in the robotic platform {R}
for the hand, as illustrated in Fig. 21; RTS defines the transformation
between the frames of reference of the robotic platform {R} and
the side grasp position {S}; RTT defines the transformation between
the frames of reference of the robotic platform {R} and the safe top
grasp position {T }.

Below are the matrices that relate to these frames of reference:

OTH =

 0
Rsq 0

0
0 0 0 1

 , HTR =

0 0 1 0
0 −1 0 0
1 0 0 0
0 0 0 1

 ,
RTS =

1 0 0 0
0 1 0 a2
0 0 1 −∆WH
0 0 0 1

 ,
RTT =

 0 1 0 0
−1 0 0 a3
0 0 1 −∆WH
0 0 0 1

 ,
(35)

where a2 and a3 are the dimensions of the superquadrics that is
necessary to set the grasp pose away from the object at a certain
distance, and ∆WH is the distance from the wrist to the centre of
the hand. Rsq represents a rotation matrix based on the {φ, θ, ψ}
(yaw–pitch–roll) angles extracted from the superquadrics compo-
nents.

The grasp list is givenby the grasps associatedwith eachquadric
qi that composes the object as previously detailed in Section 4.
After generating the grasp list and their poses for top and side
approach, the artificial system will choose using a rank pool of
weighed grasps, based on the learned probabilities. A high weight
is assigned to the grasp in case of a success in a specific context, if a
failure happens, the graspwill have a lowerweight assigned to it in
that context. Simulations were done a priori to test specific grasps
in different hand poses and different contexts to assist the grasp
rank pool to update the weights of each grasp in specific situations
and with specific objects. The decision and learning of the rank
poolmodule is based onGaussian Process Regression implemented
and applied by a partner of the HANDLE project consortium as
presented in [52].

The grasp execution by the robotic platform is performed after
the acquisition of the object point cloud and subsequent processing
for the grasp generation. The grasp generator module encloses
othermodules beyond the scope of this work. In fact, ourmodule is
one of three that compete to provide suitable grasps into a common
rank pool from which a decision is made. The system also has a
GUI (Graphical User Interface) to monitor and also interact when
necessary to remove candidate grasps or take decisions.

For the robot execution (which it is not the main focus of this
work), the mapping of the chosen grasp to the robotic platform
takes into consideration the handpose of the grasp, object pose and
the robotic hand kinematics. The adopted approachwas developed
within the HANDLE project consortium to map the grasps to the
robotic hand, and implemented an Eigengrasp-planner [53] using
the GraspIt! simulator [37]. It explores the use of grasp-synergies
and uses the eigengrasps for the Shadow robotic hand [2]. The basic



Fig. 23. Decompose view in a simulator. The images show all steps for the segmentation. Left image represents the raw object data from the Kinect sensor after removing
the table-top. The right image shows the segmentation result of the unknown object achieved by our decomposition module.
Algorithm4:Grasp synthesis steps before the robot execution
1 Input: Object Point Cloud P

// Object Decomposition:
2 pclouds[Ptop, Pmid, Pbot ]← segment (P);

3 objParamList [a1, a2, a3, e1, e2, x, y, z, φ, θ, ψ, cx, cy, cz, vq]
← getShapeSQ (pclouds);

// Using the stored Learned data for
inference given the object shape
parameters:

4 grasps []← getGraspList(objParamList);

// Generating Hand Pose (grasp list)
relative to the Object Pose

5 handPoses []← genGraspPose(grasps, objParamList);

6 Outputs: Grasp List (grasps) and their poses (handPoses)
relative to the object (P)

idea of grasping based on synergies is to combine a quick search
of the reduced subspace spanned by the relevant eigengrasps with
a later adjustment phase as a hierarchical approach, where the
synergies pre-shape the hand with approximate finger positions
around the object. Sampling a large set of suitable (e.g. human-
like) hand poses and performing a principal component analysis,
the resulting set of eigenvectors provide a new basis of the hand
joint space, where the set of eigenvectors defines the synergies
matrix. Further details are given in Deliverable 24 (D24) of the
HANDLE project [54]. For each discrete grasp type used in this
work, a mapping is made using this strategy, allowing later the
correct grasp execution by the robotic hand.

Algorithm 4 presents the general idea of the grasp synthesis.
The algorithm uses all functions demonstrated in Sections 3–5 fol-
lowing this order respectively: Decomposition (object segmenta-
tion and shape modelling) and Grasp List Generation (candidate
grasps given the object parameters and their poses relative to the
object). The algorithm does not enclose the execution part, where
the egeingrasps are used to map the discrete grasps to their correct
configuration for the robotic hand performing the object grasping,
since our goal is the grasp generation.
6. Experimental results

As previously mentioned, the artificial system was imple-
mented under the ROS platform using C++ language to perform
the grasp synthesis. The sensor used to acquire the object point
cloud during the robot execution is an RGB-D camera. The process-
ing time of the artificial system to run all algorithms described in
this work for grasp synthesis (Decomposition and Grasp Genera-
tor) takes on average up to 2 s before executing the grasp. From the
all algorithms, themost time consuming is the shapemodelling us-
ing superquadrics, since it depends on the size of the point cloud to
compute the parameters. The learned data and the pre-processing
inference enable us to have a fast decision over the object model.
The next subsections show the results achieved using our proposed
artificial system for grasp synthesis.

6.1. Simulated tests

The first stage of tests of our application were performed in
an off-line mode. Basically, we have simulated an application that
triggers allmodules (Decomposition andGraspGenerator), passing
as input a point cloud previously acquired from different sensors.
This way we could verify the consistence and the outputs of the
system for those objects.

Fig. 23 depicts the segmentation of an everyday object (un-
known to the system). First image (top-left) shows the data (raw
object point cloud) from the sensor (MS-Kinect) after removing the
table-top. The left image shows the segmentation of the object dur-
ing the decompose module.

Fig. 24 shows some everyday objects just to exemplify the
outputs of each module presenting the candidate grasps and hand
pose (in top and side grasp orientation for the chosen grasp type) of
the object graspable parts. The generated grasp list follows anorder
of appearance indicating the grasp with highest weight (higher
probability to be the selected grasp) down to the lowest one. The
figure presents the result of our simulated tests for those objects.

Some assumptions need to be taken into account before sending
the list of candidate grasps to the next module. We have to verify if
the grasps are feasible for specific parts of the object. For instance,
if the graspable part is the middle component of the object, then,
top-grasp orientation is not allowed for that component if it is in a
vertical position, and the same happens to the bottom part. Some



Fig. 24. Results using the object point clouds to test our modules. The application returned some grasp associated with the geometrical shapes (quadrics qi) of the object.
The marked quadrics in red are the object parts with higher probability to be the graspable part, and the grasps associated with this specific part have a higher weight. The
order of appearance of the grasp types indicates the most probable grasp for that component.
Fig. 25. Selected grasp (grasp 27 from [1]: Quadpod) for the object (box) executed in a robotic platform.
grasp configurations for the top and bottom parts of the object
may be not proper, due to the size of the segmented part. So, after
generating the grasp list, the system follows some heuristic rules
to discard the non feasible grasps.

In general, the results achieved from our simulated tests are
suitable for the objects presented to the system.

6.2. Tests in the robotic platform

The modules explained in this work are used to search for
feasible grasps given a 3D object, these are then mapped to the
robotic platform using the correct kinematics for the execution.
Here, we are not dealing with the planning of the trajectory to
approach the object, only the grasp type (and its pose) for the
robotic platform. The trajectory planning (reaching movements)
are addressed by othermodules of the integrated system inside the
HANDLE consortium [49].

The criteria that the robotic platform uses to chose a specific
grasp was defined inside the HANDLE project [49] and it is
explained as follows:

• If one of the provided grasps is a good starting point to reach
the final grasp after in-handmanipulation that is set by the task
(grasp transition sequence is easy);
• If the quality of the grasp is higher than those ones provided by

other means (other grasp generators);
• If the grasp candidate (hand pose) is suitable for the Inverse

Kinematics limits.
In general our modules provided good candidates that assisted
the robotic platform in performing successful grasps. However
some problems were encountered, such as the robotic hand pose
not being reachable, because it is so close to the table, and finding
a correct offset of the grasp to avoid the hand colliding with the
object before completing the grasp. More trials will enable a better
tuning and also to re-weight the candidate grasps based on the
success rate.

Fig. 25 shows an example of execution when one of the
grasp of our modules was chosen as suitable for the object. The
sequence shows when the robotic hand touches the object to
perform the grasp, then the robotic hand lifts the object and finally
releases it.

Fig. 26 presents the simulation (inside the integrated software
developed under HANDLE consortium [49]) to chose a specific
grasp before the robotic platform execution. In this specific case
our grasp was chosen and tested to validate the grasp.

Fig. 27 shows a sequence of tests using the grasps from our
system to indicate which grasps are valid and not valid.

The everyday objects used to test the modules are unknown
to the system, so that we are applying the mentioned modules
to approximate the object shape into familiar shapes to generate
a set of candidate grasps for each known shape. In general, we
can state that, after some improvements using offsets for hand
pose to avoid some restrictions (table limit, hand kinematics), the
grasp generator module is a solution to generate valid grasps for
everyday objects.



Fig. 26. Selected grasp executed in a simulator before the execution in the robotic platform.
Fig. 27. Tests in a simulator to verify which grasps from the generated list (hypothesis) are valid.
7. Conclusion and future works

An artificial system for grasp synthesis given a novel object to
be manipulated by a robotic dexterous hand was presented. The
approach follows a novel combination of knowledge acquired from
human demonstrations, with a simple breakdown of the object
into parametrized quadrics that allow matching with the previous
knowledge. The focus is on having a fast synthesis of ranked viable
grasps, suitable for a real time robotic implementation, avoiding
time consuming object shape analysis. Given an unknown object,
the corresponding point cloud is segmented into components,
and these are approximated by superquadric models. Previous
human demonstrations with know objects, also broken down
into components, enable learning the viable grasp probability
distributions associated with the superquadric primitives, across
which a matching is done to make an inference to obtain grasp
candidates for the new object. The proposed approach limits the
amount of grasps for each known object primitive based on the
learned human choices. The implemented system generates a list
of candidate grasps for the new object providing a ranked pool of
possible grasps.

As detailed previously, other approaches in the literature use
object decomposition into parts, and some also use superquadric
models. However our approach focuses on having a fast ad-hod
segmentation solution, that is sufficient since it is combined with
knowledge from human demonstrations. Other approaches that
also rely on human demonstrations manually label the object
regions and grasps, our system relies on and automatic process.
The use of the probabilistic approach, together with a target
robotic dexterous hand that uses finger synergies to adapt the
grasp completions, makes our approach effective, even if less
precisemodelling is done relative to other computationally heavier
solutions.

Our approachwas integrated into a full robotic grasping system,
and simulated and real experimental results were presented.
Results show that valid grasps are generated for everyday objects
to be used in real time by the robotic dexterous hand.

Future work will address extending the range of objects, and
possibly improving the segmentation heuristics, so that amore rich
knowledge base can be built, but without compromising the short
processing time required for real-time robotic implementation.
This will allow a more thorough comparison with existing but
more time consuming approaches to grasp synthesis. With respect
to the learning, we intend to go beyond the use of histogram
distributions. By fitting an ensemble of parametric distributions to
the data, a selection model using Bayesian Information Criterion
can assign a score to eachdistribution to select the best distribution
that models the data. The final stage of the grasp synthesis can also
be improved to better avoid collisions in the execution.
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