
 

 

Abstract — In this work, grasping movements recognition in 

3D space is presented. We also present the idea of a database 

implementation with different sensors data in grasping and 

handling tasks scenarios for our future works. Multi-sensor 

information for grasp tasks require sensors calibration and 

synchronized data with timestamp that we started to develop to 

share with the researches of this area. In the scenario presented 

in this work we are performing the grasp recognition combining 

2 different types of features from reach-to-grasp movements. By 

observing the movements from different subjects we can 

perform a learning phase based on histogram techniques using 

the segmented data. By applying Bayes rule by continuous 

classification based on multiplicative updates of beliefs we can 

classify the movements. We developed an automated system to 

estimate and recognize two types of reach-to-grasp movements 

(e.g., for top and side grasps). These reported steps are 

important to understand some human behaviors before the 

object manipulation and can be used to endow a robot with 

autonomous capabilities, like showing how to reach some object 

for manipulation.  

I. INTRODUCTION 

rasping movements have been  the focus of interest of 

many researches, including areas like neuroscience and 

robotics. Studies in neuroscience field, human reach-to-grasp 

trajectories are analyzed to verify the brain areas that are 

activated with determined tasks. Investigation about human 

trajectories is useful to analyze the hand shape, pose and 

velocity, i.e., the kinematic changes to the reach-to-grasp 

movement in people with Parkinson disease or post-stroke. It 

is useful to verify the performance and behaviors of these 

people concerning movement stability, motor coordination, 

etc. In robotics field, hand trajectories are useful for human-

robot interaction using gestures to interact with social robots 

and also for complex tasks like imitation learning.  In this 

work we want to show the estimation and recognition of 

grasp movements by a Bayesian approach. Analyzing these 

movements we can be able to understand some human 

behaviors during the hand journey to reach and grasp an 

object. This information can be used to endow robots with 

human-like actions, i.e., using the movements before the 

object manipulation or object displacement. Beside of reach-

to-grasp analysis, this work can be useful also for gesture 
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recognition for human robot interaction. We also intend to 

make a contribution with database of grasp movements using 

different sensors and different scenarios for grasping tasks 

showing some useful sensors calibration for some specific 

grasp tasks. 

II. RELATED WORK 

Bayesian models are used in [1] to classify gestures from 

images sequences. Tracking of human hands and face are 

used based on skin-color features. The proposed application 

is towards human-robot interaction. The human actions are 

interpreted and mapped to the robot actions. They have 

contributed also with Laban Movement Analysis that helps 

to identify useful low-level features and to develop a 

classifier of expressive actions. Images sequence are used in 

[2] for hand tracking and hand shape representation when a 

person is gripping a mug.  The authors proposed a method 

for hand shape representation that characterizes the finger-

only topology of the hand, using cepstral coefficients. 

Techniques of speech signal processing are used for that. 

This work shows hand shape recognition classified as top-

grab, side-grab, flat-hand and handle-grab when the hand is 

close to object. Some works show human motion tracking 

which are important for different applications inside robotics 

field such as learning human motion models for recognition 

in vision and learning primitives from motion capture [3]-

[6].Several works concerning grasping involves the learning 

of object affordances in which some of them use different 

sensors data towards finding different ways to grasp a 

determined object, such as the work presented by [7].  

In our previous work [3], we developed an application to 

segment trajectories to find 2D changes in direction features 

like up, down and line for its classification. In that work we 

have used second order derivative to analyze the evolution of 

the trajectory finding features analysing just the x and y axes 

of a 3D trajectory ignoring other features like diagonal, 

forward and backward directions that could improve the 

classification. The learning was based on histogram 

techniques. The classification results were satisfactory but 

we also obtained undesired results as false negative and 

recognition of the trajectory with low probability. 

In this work, features from 3D trajectories (3D changes in 

direction) are extracted for grasping movement recognition 

ugin a probabilistic approach.  
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III. SENSORS DATABASE: SCENARIOS AND APPLICATIONS 

We built a database of different sensors data (Fig.1) in 

different scenarios of grasping and handling tasks. The main 

idea is a contribution for this research field with 3D grasp 

movements acquired from different sensors: 3D trajectories 

from magnetic tracking system;  images sequences  from 

monocular and stereo; fingers flexure during the movement  

acquired from data-glove; force applied in the object during 

the manipulation (tactile sensors) and points of interest 

trough a subject sight (eye tracker).  
 

 
Fig.1. Grasping movement database acquired in different scenarios with 

multimodal data. 

 

The sensors data stored in the database need to be 

synchronized by a timestamp during the data collection. 

Beyond of sensors data, the sensors specifications, 

calibration parameters and transformations matrices will be 

stored also in the database. Calibration between the sensors 

is needed and the transformation results are also stored.  

A. Sensors Calibration Step 

In order to combine both data, from vision and magnetic 

tracker device, or even to use one as ground-truth, in this 

work we have done a useful calibration between the 

Polhemus Liberty 240/8 tracking device [9] and Videre 

STH-MDCS3-9cm stereo camera [10] to acquire a 

transformation to re-project the 3D points of the tracker 

device frame of reference in the image plane and vice-versa. 

This calibration is also useful for 3D object shape 

representation using multimodal data, integrating the visual 

cues from stereo with data from grasp exploration (i.e., using 

the magnetic tracker attached to the fingertips for contour 

following, acquiring the object shape by the fingers 

movements around the object).  

The calibration allows us to see a 3D point in the local 

reference frame of tracker device to the stereo camera 

reference frame. The first step of this calibration is to acquire 

the intrinsic and extrinsic parameters of the stereo camera. 

The Polhemus device give us the 3D points related to its 

frame of reference, so that we can use the strategy of using a 

white tape on the sensor and then we can recognize this 

marker in the image, obtaining the 3D point after the camera 

calibration (Fig.2). We collected 30 images (from left and 

right cameras), acquired at same instant of the 3D point from 

the tracker device sensor in different positions and 

orientations. The tracker sensor was attached to a tripod on a 

red piece of paper for easy localization in the image. This 

idea is originally inspired from auto calibration method 

between multi-cameras by Svoboda in [11] where a laser 

pointer to get different views point was used. 

 
 

 
Fig.2 Calibration strategy: Using a white tape on the sensor we can easily 

localize the marker in the images to compute the 3D point corresponding to 

point of the tracker device. 

 

 

The stereo camera and the tracker reference frames, {C} 

and {P} respectively, are rigid to each other. Collecting two 

set of 3D corresponding points in two coordinate references, 

},...,1|{ Nipp i

cc   and },...,1|{ Nipp i

pp    

we compute the following equation to acquire a 3D point 

from a {P} to {C}:  
 

 

To compute c

p R  and c

pt  (rotation and translation 

matrices of the homogeneous transformation) Arun’s method 

described in [12] has been used which is based on an 

algorithm to find the least-squares solution of R and t using 

singular value decomposition (SVD) of a 3x3 matrix. 

Fig.3 shows the result of the calibration: the magnetic 

tracker sensor with a white tape attached to a tripod and the 

re-projection of its 3D point is represented as a yellow point 

in the image. 

 

Tab.1. Average re-projection error (AE) and the                   

standard deviation (SD) 

 N= 7 N=10 N=13 N=15 

AE 12.363 8.9170 7.3334 6.4914 

SD 3.450 3.092 2.923 2.825 

 

 

Table 1 shows the average re-projection error values, in 

pixels, according to the number of 3D points used. The 

average error of the proposed calibration decreases when the 

method uses a higher number of points. It is possible to 

consider that for N = 20 points, the calibration method is 

stable. 

c

pp

c

pc tpRp   (1) 



 

 

 

 
Fig.3. Re-projection of the 3D point (yellow color point inside of the circle) 

of the magnetic tracker in the image plane. The magnetic sensor with a 

white tape is attached to a tripod on a red piece of paper to easily localize 

the sensor in the images to compute the 3D points in the camera frame of 

reference. 

 

Fig.4 and Fig.5 show the evolution of estimates of the 

rotation and translation matrices acquired from the 

calibration according to the number of points used. 
 

 
Fig.4. Evolution of the rotation matrix estimate by the calibration method 

according to the number of points used in the approach. 

 

 
Fig.5. Evolution of the translation matrix estimate by the calibration 

method according to the number of points used in the approach. 

 

Other sensors require individual calibration like the 5DT 

data-glove [13] for fingers flexure data. The dynamic range 

may differ with the persons hand sizes. The calibration by 

the 5DT software normalizes the effect of different dynamic 

ranges for different hand sizes. For its calibration the 

dynamic range is computed as follows: 
 

minmax VVR   (2) 

 

where R is the dynamic range; Vmax is the maximum output 

value (flexed hand) and Vmin is the minimum output value 

(flat hand). A normalization process is necessary and for that 

R is used, for example, lets work through the thumb, Vmin and 

Vmax are 40 and 206 respectively , so that R =  166 . To scale 

the measured values across the full R value (256 values), the 

normalization is compute as follows: 
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where N is the normalized value; M is the measured value, 

for the thumb. 

 The calibration parameters and all information correlated 

are stored in the database for each specific scenario of grasp 

and manipulation tasks. All sensors used in each specific task 

have temporal information for synchronization, a timestamp 

that is also stored with the sensors data. 

Through multi-sensors information we can combine cues to 

better understand how humans achieve a grasping. Some 

questions can be posed related to how humans perform the 

grasp (Fig.6). 
 

 
Fig.6. Some questions of how to achieve a grasping and a possible answer 

to solve this problem trough multi-senor cues. 

 

Multimodality can assist to solve ambiguities and also to 

map the corresponding knowledge to a robot, for instance: 

trajectory, force, fingers flexure during a manipulation task. 

Many human demonstrations using different sensors 

modalities for a specific task are stored in a dataset and can 

be used afterwards to learn and replicate the same task by a 

robot. Other studies can also be done with the stored data, 

such as the estimation of the object that will be chosen for 

grasping and the estimation of possible contact points on the 

object analyzing the person sight (trough eye-tracker device), 

etc.  

IV. EXPERIMENTAL SETUP  

In this work, we are using the same scenario used in our 

previous work [8]. We have used Polhemus Liberty tracking 

device to track hand trajectories performed by humans. We 

have attached five sensors to a glove for acquiring 3D hand 

trajectories, allowing us analyzing the fingers behaviors 

during their journey to the object. Another sensor was 

attached to object to have a priori knowledge of the object 

position and the size of the trajectory (e.g. difference 

between initial hand position and the object sensor). Two 

reach-to-grasp movements are performed for classification: 



 

 

Top-Grasp and Side-Grasp (Fig.7). Fig.8 shows our current 

experimental setup for 3D movements recognition. 
 

 
Fig.7. (a) – Side-grasp; (b) Top-grasp. 

 

 
Fig.8. Experimental setup for movement demonstrations and classification. 

V. SEGMENTATION AND FEATURES EXTRACTION 

The segmentation of a movement is empirically done by 

segmenting the trajectory into specific parts and the features 

extracted are curvatures and hand orientation in 3D space. 

The features extraction is based on our previous work [14]. 

We have used the cylindrical coordinate system  (r, θ, h) to 

detect the features. The possible directions combining h and 

θ information are:  up, down, left, right, up-left, up-right, 

down-left, down-right and non-movement. Details about the 

steps for these features detection are in [14]. Another feature 

extraction was adopted, the hand orientation along the 

trajectory by approximating the hand plane using 3 sensors 

on the fingertips (index, middle and ring finger fingers). 

Afterwards, two probabilities tables for each trajectory can 

be built from the learning phase, one for the curvatures 

detection and another for hand orientation. The segmentation 

process is performed in each part of a normalized trajectory 

(i.e., all trajectories are normalized to the same scale). In this 

work, we have split the trajectory in 8 parts, extracting 

features in each of these parts. More information about these 

steps can be found in [14]. 

VI. LEARNING AND CLASSIFICATION OF GRASP MOVEMENTS 

Computational models for human perception and action has 

been explored by researches. Some studies about human 

brain reports that Bayesian methods have achieved success in 

creating computational theories for perception and 

sensorimotor control [15]. Based on these successful 

applications of Bayesian theory, in this work we developed 

our approach using Bayesian techniques as described in the 

next subsections.  

A. Grasp Learned Tables 

Given a set of observations to represent a type of Grasp G, at 

some displacement d, we have the probability of each type of 

curvature C in each part of a trajectory represented as       

P(C | G D).  The same is applied for hand orientation, so that 

we have P(O | G D) where O represent all possible hand 

orientation (top or side). 

For each movement (demonstrated by a subject) is built a 

histogram to store the probability distribution of the features. 

The learned table is a mean histogram calculated from all top 

grasp and all side grasp demonstrations. For more details see 

[14]. Fig.9 shows our learned grasp tables for curvatures 

detection and Fig.10 shows the learned tables for hand 

orientation detection. 
 

   
Fig.9. Left image represents the top-grasp curvatures learned table and right 

image side-grasp learned table. 

 

            
 

 

Fig.10. Left image represents the top-grasp hand orientation learned table 

and right image side-grasp learned table. 

B. Classification Model using Bayesian Techniques 

Bayesian classification models have already proven their 

usability in gesture recognition systems [3] [8] [14]. Based 

on these studies we adopted a Bayesian model for grasp 

recognition analyzing the reach-to-grasp movements. The 

estimation and recognition of a type of grasp happens along 

of a trajectory that is being performed by a subject. In each 

hand displacement (after a time instant), the probability of 

each type of grasp is updated. In our previous work [14] we 

have presented Bayesian models for trajectory classification, 

one using curvatures features, another using hand orientation 

features and a third one as an ensemble, combining both 

posteriori by a mixture model were the weights for each 

model is obtained by an uncertainty measure. In this work we 

are simplifying the strategy, showing that a Naïve Bayes 

classifier as simple a dynamic Bayesian network using the 

curvatures (changes in direction) and hand orientation 

features can present good results.  

To understand the General Grasp Recognition Model some 

definitions are done as follows:  

1. g is a known grasp from all possible G (Grasp 

types); 

2. c is a certain value of feature C  (Curvature types); 



 

 

3. o is a certain value of feature O (hand orientation 

types); 

4. i is a given index from all possible parts composed 

of a distance D ( 1/8 of a trajectory size). 

The probability P(c | g i) that a feature C has certain value 

c can be defined by learning the probability distribution         

P(C | G D).  The probability P(o | g i) that a feature O has 

certain value o can be defined by learning the probability 

distribution  P(O | G D). Knowing P(c | G  i), P(o | G i)  and 

the prior P(G), we are able to apply Bayes rule and compute 

the probability distribution for G given a hand displacement i 

concerning the hand displacement of the learned table and 

the features c and o. Initially, the grasp G is a uniform 

distribution and during the classification it is updated 

applying Bayes rule:  

)P(g )g | i )P(og | i P(c i) o c |P(g toptoptoptop   (4) 

)P(g )g | i P(o )g | i P(c i) o c |P(g sidesidesideside   (5) 

Equations (5) and (6) can be rewritten and represented as 

follows: 

 




j

jjj )P(G )G | DOP( )G | D P(C

P(G) G) | DOP( G) | D P(C
 D) O C |P(G  

(6) 

The main idea here is to use the online classification when 

someone is performing a trajectory. The posterior probability 

of a current hand displacement becomes the prior for the 

next displacement (probabilistic loop). We formulate the 

equation as recursive way. Assuming that each hand 

displacement we can find new curvatures and new hand 

orientation, we can then express the online behaviour by 

using the index i that represents a certain displacement 

performed by the person in the reach-to-grasp movement. 

The rule for classification is based on the higher probability 

value, being necessary obtaining a certain confidence (e.g. 

0.7). We expect that a reach-to-grasp movement that is being 

performed by a subject to grasp the mug by top or side grasp 

will produce a grasp hypothesis with a significant 

probability. 

C. Preliminary Results of Movements Classification 

Fig.11 shows an example of side-grasp trajectory 

performed by a subject and table 2 shows the answer of our 

approach along this trajectory classifying it.  

Table 3 shows the results of classification for 10 trials 

performed by different subjects (side-grasp trajectories). A 

false negative value (trial 5) happened due to the similarity 

between side and top grasp trajectories. A deep study and 

tests performing much more trials need to be done with this 

classification model for further analysis. By now we noticed 

that the reach-to-grasp movements (top- and side grasp) 

differs more at the end of the trajectory when the hand has 

more changes in direction and in its pose (orientation). This 

happens when the hand is preparing to form a hand 

configuration for a specific grasp. The object pose and size 

influences trajectory and type of grasping. 

 
Fig.11. Side-grasp trajectory (raw data measured in inches). 

 
Tab.2. Classification of the trajectory shown in Fig. 11 

Trajectory Parts Top% Side% 

1 0.11 0.88 

2 2.44 97.56 

3 2.44 97.56 

4 0.04 99.96 

5 0.04 99.96 

6 0.07 99.93 

7 0.01 99.99 

8 0.01 99.99 

 

Tab.3. Result of 10 trials of side-grasps. In 10 trials we obtained 

one false negative (less than 50%). 

Trial Classification  1 - False Negative 

1 99.89 %  

2 99.90 %  

3 76.33 %       

4 84.07 %  

5 18.68 %    

6 99.99 %  

7 96.70 %  

8 98.79 %  

9 97.87 %  

10 98.97 %  

VII. CONCLUSION 

A probabilistic approach for 3D grasping movement 

recognition was proposed. A useful calibration between 

stereo camera and magnetic tracker device for human motion 

capture tasks was presented. After demonstrations of top and 

side grasp movements, features from these 3D trajectories 

are extracted, e.g., changes in direction (curvatures) and 

hand orientations. The learning phase is based on histogram 

techniques to quantify the probability distributions. A simple 

dynamic Bayesian network is used for classification. The 

preliminary results presented suitable classification of reach-

to-grasp movements. However, a major evaluation has to be 

done with much more trials. A deep test and analysis will be 

carried out in the future to confirm the robustness of the 

recognition phase. This approach can also be used for 

gesture recognition. Other features such as velocity, 

backward and forward movements will be addressed in the 

future to improve the performance of the classification 

method. 
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