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Horopter based Dynamic Background Segmentation applied to an Interactive
Mobile Robot

José Prado, Luis Santos, Jorge Dias

Abstract— Interactive mobile robots require object/subject
detection in very visually complex environments. In the field
of computer vision, specially when applied to robotics, several
approaches like face detection, face recognition and pedestrian
detection often have to deal with issues associated to bad
illumination and strong featured background. These issues
imply lack of performance because human detection algorithms
will frequently process the whole image searching for features.
Also, background segmentation approaches are commonly used
to solve this problem on static camera surveillance. However all
these approaches are unable to effectively deal with the constant
background changes that certainly happen when the camera
sensor is installed on a mobile robot. Hence, in this work we
propose a Horopter based Dynamic Background Segmentation
solution to this problem. Results show that our approach,
significantly enhanced tracking, and consequently improved
movement classification towards interaction.

I. INTRODUCTION

Human-robot interaction approaches like face detection,
face recognition [12], [16], [17], [13], pedestrian detection
[11], [10] are widely known in robotics field; however
frequently they lead to performance problems. Additionally,
false positive and false negative problems are commonly
associated to bad illumination. Interactive robots mostly in-
teracts with the closest subject, another common assumption
it that the robot will never deal with two subjects at the same
time. Horopter is the optical phenomenon in stereo vision
that happens in a form of a 3D curve on the Cartesian space
where the disparity is zero (details in section II-C). Taking
this into account, we propose a Horopter based Dynamic
Background Segmentation (DBS) in order to reduce the
searching space to a zone of interaction1 2

To define Zone-of-Interaction we introduce the horopter
definition. As it will be explained in section II-C, given three
points (whose coordinates correspond to two cameras and the
desired focus point), it is possible to draw a circumference
containing all of them. The inside area of that circumference
is the interaction zone. This means that only objects inside
that area are possible of being detected, and thus to interact
with the robot. Our approach is based on the Geometric
Horopter and in order to calculate the horopter, first it is
necessary to have the stereo disparity map.

Although we like to encourage the use of our approach to
social robots, we prefer to call our robot an interactive-robot,

1zone of interaction is the region inside the horopter 3D space (see
theoretical horopter definition on section II-C)

2The authors gratefully acknowledge support from EC-contract number BACS FP6-
IST-027140, the contribution of the Institute of Systems and Robotics at Coimbra
University and reviewers’ comments.

Fig. 1: Segway Robotic Mobility Platform (RMP) equipped
with the robotic head. Configuration of the robot ready for
human-interaction, gaze tracking and pursuit.

since social robots might have several social aspects that our
interactive-robot does not have (like facial expressions, arms
and voice).

In this work, section II-A describes the calibration method
for the stereo camera system, using the homography concept.
Briefly, we can define homography [6] as a geometrical
method which allows a linear transformation (using the
homographic matrix) of coordinates between two planes. The
following section II-C will show how the horopter calculation
proceeds. Further in section II-D we give an example of
how face and hand recognition frequently used on gesture
recognition algorithms could have better results with our
approach. In section II-E we explain how we did implement
our robotic head tracker in order to have better interaction
with humans. Finally in section III-A, as a study case,
we implemented this technique to improve the results of
a gesture recognition algorithm based on Laban movement
analysis proposed in [14].

Featured base face detection: Recently Bau-Cheng Shen
and Chu-Song Chen proposed a method to retrieve similar
face images from large face databases. The proposed method
extracts a set of Haar-like features, and integrates these fea-
tures with supervised manifold learning. Haar-like features
are intensity-based features. The values of various Haar-
like features comprise the rectangle feature vector (RFV)
(detailed on [16]), to describe faces. Compared with several
popular unsupervised dimension reduction methods, RFV is
more effective in retrieving similar faces. To further improve
the performance, [16] combine RFV and a supervised mani-
fold learning method and obtain satisfactory retrieval results.

Skin color hand detection: According to [8], skin color
can provide a useful and robust cue for human-related image
analysis, such as face detection, hand detection and tracking,

GPS-TvO
Proceedings of the ICAR 200914th International Conference on Advanced RoboticsMunich, Germany, June 22 - 26, 2009

GPS-TvO
Copyright by GPS Gesellschaft für Produktionssysteme GmbH



2

people retrieval in databases and Internet, etc. The major
problem of such kinds of skin color detection algorithms is
that it is time consuming and hence cannot be applied to a
real time system.

A. Related Work

Robotics has already acknowledged the evidence that hu-
man movements could be an important cue for Human-Robot
Interaction. Sato [15], while defining the requirements for
’human symbiosis robotics’ state that those robots should be
able to use non-verbal media to communicate with humans
and exchange information. As input modalities on a higher
abstraction level they define channels on language, gesture
and unconscious behavior. This skill could enable the robot
to actively perceive human behavior, whether conscious and
unconscious. Human intention could be understood, simply
by observation, allowing the system to achieve a certain
level of friendliness, hospitality and reliance. By using a
reference image, a video coding approach has previously
been developed in the context of road surveillance [18].
Moreover it was shown how the image reference was built
during initialization phase.

The classical background subtraction technique was used
to perform the segmentation of mobile objects. Instead of
updating the remote reference with a specific period, [18]
presented a technique to update the remote background
image by pieces. The updating of the remote reference is
triggered when some specific conditions are met, depending
on the amount of moving areas. In [9] an integrated system
for smart encoding in video surveillance was presented. Their
system aims at defining an optimized codestream organi-
zation directly based on the semantic content of the video
surveillance analysis module. The proposed system produces
a fully compliant motion stream that contains regions of
interest (typically mobile objects) data in a separate layer
than regions of less interest (e.g. static background). It can
also be used in applications requiring selective scrambling
of regions of interest as well as for any other application
dealing with regions of interest.

B. Contextualization

There is a pre-requisite on the field of human-robot
interaction, this would be the need for the robot to recognize
the person with whom it will interact. Usually it is done
using a video sensing. Since the system is implemented in a
mobile platform, to separate the person from the background
demands more complex processing, due to dynamic char-
acteristics of the background. This means that an approach
based in static background, as in [18] and [9], is not possible.
The challenge was thus to have a robust real time solution
for dynamic background segmentation on mobile robotics.

Our approach is then based on the Geometric Horopter as
will be shown in section II-C. Our interactive robot shown in
Fig. 13 will consider visible objects only if they are inside

3The robotic head was developed in University of Coimbra Portugal with
support from POP European project and Professor Dr Helder Araujo

the zone of interaction region (projected on 2D space of
camera image plane). The expected result is seen in figure 2a,
where the acquired image from the robot’s perspective can be
seen. However, situations occur where interference exists. In
figure 2b we see a multi-person (noisy) scenario, where the
presence of a second subject would interfere on the analysis
of several algorithms [12], [16], [17], [13], [11], [10]. Our
approach, DBSH (Dynamic Background Segmentation based
on Horopter), will only detect subject inside the horopter
zone, which is represented by a dashed line at the floor
(figure 2b).

(a) (b)

Fig. 2: a) Image acquisition from the robot’s point of view
b) Noisy scenario, another subject trying to interfere during
the interaction

II. OUR APPROACH

A. Camera Calibration

Camera calibration has been extensively studied, and stan-
dard techniques established. For this work, camera calibra-
tion was performed using the Camera Calibration Toolbox
for Matlab [2]. The C implementation of this toolbox is
included in the Intel Open Source Computer Vision Library
[7].

The calibration uses images of a chessboard target in
several positions and recovers the camera’s intrinsic param-
eters, as well as the target positions relative to the camera,
as shown in fig 3b. The calibration algorithm is based on
Zhang’s work in estimation of planar homographies for
camera calibration [20], but the closed-form estimation of the
internal parameters from the homographies is slightly differ-
ent, since the orthogonality of vanishing points is explicitly
used and the distortion coefficients are not estimated at the
initialization phase. The calibration toolbox will also be used
to recover camera extrinsic parameters and homographic
matrix between the two cameras of the stereo system.

B. Disparity map and Depth map

Disparity maps represents the difference distance between
points4 of a pair of images; meanwhile depth maps represents
the expected depth/distance that an area is considered to be
away from the camera.

4these points can be either raw pixels or features depending on the
approach
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(a) (b)

Fig. 3: Stereo camera calibration with Bouguet Matlab tool-
box
a) Images with chessboard target used for calibration
b)Reconstructed target positions relative to the camera frame
referential

We used an adaptation5 of the Videre [19] libraries in
order to get the depth map. Videre library first construct
a disparity space image from stereo image pair, and then
calculate temporary disparity maps using the SAD method
[4]. Later stage of the algorithm will reduces both the blurred
errors at depth discontinuities and the mismatched errors at
half occluded areas. The final step is to use a median filter to
interpolate the dense disparity map. Once one has calibrated
the cameras and the disparity map calculated, it is trivial to
get the depth map Fig.4a a).

(a) (b)

Fig. 4: a) Depth map (’hot’ colors represent nearest areas,
’cold’ colors represent further ones b)Dominant eye raw
image

C. Geometrical Horopter

1) Properties of ViethMuller Circle: The concept of inter-
action zone has been defined as dependent of a circle. That
circle is called the Vieth-Muller Circle. The Vieth-Muller
Circle defines the region where the disparity is equal to zero,
while the disparity grows for inside with positive values and
grows (shrink if considering the raw value) to out-side with
negative values.

Pixels that present negative values for disparity, will be
assigned zero value (black color pixels). The result is a
segmented image where the pixels calculated to be inside
the Vieth-Muller circle define the ’visible’ objects within the
circle (the interaction zone). The segmented image (right
column of figure 5) results in a region of interest and this
region will define the true input pixels for the face/hand

5Videre cameras usually do not vary so much the interocular distance
from one model to another, that fact makes possible to have reasonable
results even without calibration. In our case we adapted this library by
allowing grabbing from other cameras. We also allowed external calibration
data input; thus we used in this work two monocular cameras in a stereo
system that allows vergence.

detector. Consequently the robot will interact only with
subjects inside Vieth-Muller circle, i.e. inside its current
horopter.

Notice that we still have some noise at the segmented
images, these noisy areas exists usually due to homogeneous
areas in the original image. Homogeneous areas and also
very similar neighbor features of the image can add noise
to our depth map and consequently to the final horopter
segmented image. Although we have this noise the result
is still better for hand and face detection than if you have no
segmentation.

Fig. 5: a) The toolbox is yet outside the Vieth-Muller Circle;
b) Toolbox starting to enter the horopter zone; c) The object
is fully inside the Vieth-Muller circle, and thus, visible.

D. Subject Detection
Our system performs subject detection starting with face

and hand detection. Further it combines these features using a
body shape triangle representation as described on subsection
III-A.1. Once the body-shape triangle is defined, it is possible
to assign the triangle properties with the LMA expected
variables according to table I.

Additionaly we combined face and hand detection algo-
rithms with the horopter dynamic segmentation. We firstly
do the dynamic background segmentation, hence it is only
necessary to slide on the remaining pixels; this significantly
increases the detection performance. Thus we have very
fast (10 fps) results on the segmentation plus detection.
The gesture recognition algorithm proposed in [14] assumes
always the same default initial position for face and hands,
later on the process it tracks the real position; this approach
implies on performance lost during godfather6 localization.
Thus, in order to save start up time, our choice was to firstly
detect the face and the hands position with the algorithms
previously mentioned and give this as input to the gesture
recognition algorithm.

The red oval on fig. 9 b) is an approximation of the
search region. It is observable on the right b) image that
there are areas with skin color on the wall and floor, so if
the full image was passed to the hand algorithm hand false
positives would certainly occurs. Furthermore similar errors
could happen for the face algorithm if the background was
strongly and randomly featured.

6godfather is defined on [14] as the person whom the robot is supposed
to interact
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Fig. 6: αu= pan ,θv = tilt — Tracking angles to the robotic
head

E. Tracking

If a subject remains inside horopter for some seconds, the
robot will elect this subject to be it’s godfather. Let’s call
godfather the human elected for interaction with the robot.
Hence the robot locates his face and hands as explained in
section II-D. As our robot is an interactive robot, we want it
to track the godfather while he moves also. In order to have
an intuitive interaction it is necessary that the man sees the
robot facing him; or, in other words, the robotic head needs
to move targeting at the center of the subject head.

In homogeneous coordinates consider an image point
P (x, y, z, 1), after normalization P (u, v, 1); knowing focal
length f from camera intrinsic calibration, d is the distance
from the camera to the target object, and an empirically
found multiplier λ. We have: φ = d ∗ λ. Due to the fact
that u and v are initially in pixels while d and f are initially
in centimeters, the multiplier λ is necessary.

Then, finally we have as it is visible on fig. 6 tanθv = v
φf

and tanθu = u
φf .

III. APPLICATIONS OF DYNAMIC BACKGROUND
SEGMENTATION TO INTERACTIVE ROBOTICS

As mentioned on previous sections one of the principles
we are focused in is interaction. The interaction scheme can
be simplified and thus divided in two stages:Whom to interact
with; How to interact. The whom question as been described
throughout sections II-C to II-E. This section will give a
general overview on the how.

A. Laban Movement Analysis

Rett J. in his work [14], investigated the possibility of
using Laban Movement Analysis (LMA) to classify human
movements. Laban Movement Analysis, is a descriptive
language of dancing movements. It was developed by Rudolf
Laban (1879 to 1958), considered by many a pioneer of
European modern dance and theorist of movement education.
There are some studies related to LMA, but this is particu-
larly interesting, because an interactive robot was developed
to serve as a demonstrator of the usability of this technique.

Literature is not in consensus about the number of LMA
components. Most notably, the work of Norman Badler’s
group [3], [21], [22], [1], divides LMA into five components
(Fig. 7) that are: relationship, space, body, shape, effort.
Each of this latter four components deals with a specific
aspect of movements. Non kinematic components: Body
specifies which body parts are moving, their relation to the

Fig. 7: The five LMA components

(a) (b)

Fig. 8: a) LMA Global Model b)The triangle formed by the
hand-head-hand positions is used to express Shape

body center; Space deals directly with the trajectory executed
by the body parts while performing a movement. Within
the Kinematic ones there are: Effort which deals with the
dynamic qualities of the movement, and the inner attitude
towards the use of energy; Shape (emerging from Body
and Space) is focused on the body itself. Then we have
Relantionship that appears as the less explored component,
and describes the interaction with oneself, others and the
environment. Some literature only considers the first four
mentioned components [5].

1) Laban Movement Analysis within robot-human interac-
tion context: Each the mentioned components deals with a
specific aspect of expressive movements, which are closely
related to physical entities. The initial hypotheses of cor-
respondences between some LMA parameters and physical
entities are expressed as shown in I.

For the description of the Space component a feature based
in displacement angles was chosen. This physical measurable
entity represents the Space component of LMA very well
and the process of computation is simple. When using a
low cardinality we can expect a good performance of the
Bayesian method for learning and classification.

Displacement angles, which also have been used by [21]

LMA parameter Physical entities
Space Displacement angle

Effort.Time(sudden) High acceleration, High velocity
Effort.Time(sustained) Low acceleration, Low velocity

Effort.Space(direct) Small curvature, Small angular velocity
Effort.Space(indirect) High curvature, High angular velocity
Effort.Weight(strong) Muscle tension, Medium acceleration
Effort.Weight(light) Muscle relaxed

Effort.Flow(free) High curvature, High angular velocity
Effort.Flow(bound) Low acceleration, Low velocity

SpatialShaping Displacement angle
ShapeFlow Position and shape of hand-head-hand triangle

TABLE I: Initial hypotheses of correspondences between
LMA parameters and physical entities
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can be calculated easily from two subsequent positions. They
describe the trace of a curve quite well and are independent
from the absolute positions. As the position data is projected
to planes, each plane produces a sequence of displacement
angles with a certain sampling rate and discretization. For
the Effort component of LMA, the assumption of an high
acceleration when Time.sudden occurs seems to be a logical
choice. The high velocity might follow as a consequence
of the high acceleration. The inverse situation is assumed
during Time-sustained when low acceleration and velocity
is assumed. Interpreting Space-direct as reaching towards
a target we can assume a straight trajectory of the hand.
This suggests to take the curvature into consideration as
a measure of ’directness’. The mathematical definition of
curvature though, requires a parametrized curve which is
independent of time t. The curvature k is approximated
by calculating the change of displacement angles (angular
change; angular velocity). The Weight quality is related with
muscle tension but the attempt to give a measure for this
can not be achieved within the scope of paradigm three. The
only relation we draw is that highly tensed muscles can not
exert high acceleration. The Flow quality is interpreted as
the attempt of consciously following a planned trajectory
or not. We assume that a Flow-bound movement will have
a low acceleration and velocity, while in Flow-free a high
curvature is expected. As it can be seen the mapping is
not perfectly one-to-one and for Weight-light no (feasible)
evidence is given at all.

While these two components (Space and Effort) that
have just been described have already been implemented in
[14], some space is left for improvement in the remaining
components.

Regarding the body component, it deals with body itself
and what body parts are moving related to the body center.
As we consider only upper body expressive movements, the
sternum is considered to be the body center. Body can use
descriptors like spereading and skinking.

For the Shape component, face and hands can be combined
in order to have a body shape and according to [14] the angle
formed in the vertex of the head, can be used to recover a
shape component. This will give the possibility to semantic
descriptions like growing or shrinking. To strengthen our
feature set, the perimeter of the triangle can also provide
good information. The general geometrical concept behind
this descriptors can be found in Fig.8b. Two measures are
calculated one is the vertical position of the Incenter Iz
of the triangle formed by the hands and the head. Upward
displacements relative to the initial Incenter are indicating
growing, while downward displacements indicate shrinking.
Additionally, the total length of the triangle l = a+ b+ c is
used as an evidence for shrinking and growing.

B. Interaction

In [14], a Bayesian framework is used as support to the
implementation of LMA. The Bayes net implementation is
out of the scope of this work, however, Fig. 8a presents
the global model for contextualization purposes. Since LMA

Movement Interpretation Action
Circle turn 360º Rotation
Pointing Acknowledgment Perform Action
Wave Left Step aside (left) Move Left
Wave Right Step aside (right) Move right
Sagittal Wave Come closer Move Forward
Bye-bye Ignore Gesture, Stop intercation Switch system off

TABLE II: Movement and correspondent robot actions

is composed of four main components, Bayesian approach
gives us the flexibility of component integration, i.e. each
component can be modeled separately and integrated in a
final global model. Also probabilistic approaches allow us
to deal with uncertainty and incomplete data, which may
also occur, in case tracking fails at some point. As input to
the Bayesian network, features are provided as evidences.
While movements are being performed, the tracking of body
parts generate 2-D trajectories. The features (e.g. angle
displacements, vectorial displacements, acceleration, etc.)
emerge directly from these tracked trajectories.

A set of movements was learned, and a set of actions was
assigned in response, i.e. the robot, through the probabilistic
approach, estimated a determined movement through infer-
ence of the features, and consequently would react to its
assumption. Table II shows the movements and the action
responses.

As it can be seen, the actions of the robot are a direct
consequence of the movement identification, and this iden-
tification relies on the robustness of the tracking algorithm.

As already previously stated, when using color tracking
schemes, the tracker sometimes loses the target by means of
generating false positives for body part identification. This is
due to multi-colored backgrounds, which are very common
within dynamic scenarios. Thus, by applying the geometric
horopter technique to the system used in [14] was able to
reduce the search area within the image. The perfect scenario
occurs when a perfect bounding box around the human
silhouette is generated, as it was theoretically represented
on Fig. 2a. The algorithm slowed its tracking computational
time, from deploying 15 frames/second to 10 frames/second,
which is not considered critical, as 10 frames is still a
good rate. This happened because the old version used one
camera only, and after the application of this method, most
processing time is dedicated to the computation of the depth
image. However tracking results increased dramatically, by
reducing the tracking false positives in 81%. To strengthen
our tracking rate, geometric constraints were also applied.

As a direct consequence of the tracking enhancement, the
movement classification also improved. Past experiments,
with the old tracking method, often showed tracking defi-
ciencies. This fact would lead to the necessity of perfor-
mance repetition by the subject, so the movement could
be recognized. The tracker, in complex environments would
return false positives 43% of the time, hence, the movement
would be misclassified. The approach based on the geometric
horopter, improved the classification rate to 83.4% (from
a past rate of 63.5%). These are significative results, if
one understands that robot-human interaction should occur
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Fig. 9: a) Subject entering in horopter, consequently entering
in the field of view of the robot. b) subject is inside the
horopter and thus have his face and hands localized.

Tracker loss Movement C.R. Real C.R.
Full image processing 43.0% 63.5% 36,2%

ROI processing 8.6% 83.4% 76,2%

TABLE III: Results for human-robot interaction.

smoothly. Problems like tracker loss and misclassification
should be avoided, as this often results in the lack of interest
from the human side.

Results are summarized in TableIII. Attention is called
to the last column, where “real” classification rate (C.R.)
present the results in a different perspective, so the reader
understands the true enhancement of our approach. Consid-
ering that a movement is only classified when the tracker
is not lost, i.e. tracker loss represents misclassification, the
real classification rate for the old method returned positive
identification of 36.2% for all trials. However, applying
the new method (ROI stands for the Region Of Interest
corresponding to the elipsoid around the subject’s silhouette),
results improved to 76.2%. This new perspective of looking
at the results shows that our method effectively improved our
classification rate in 110.5%.

Regarding movement classification alone, we can consider
that LMA is a valid approach for movement classification. If
body parts are correctly tracked, 83.4% of positive classifica-
tions is a good result, having in mind that not all components
are yet implemented.

IV. CONCLUSION

Dynamic background segmentation is a good strategy to
reduce the false positives of several algorithms that are
based rather on pixel color or features. By reducing the
scope of the searching image to an zone of interaction
area, the applications of the DBS we proposed here are
wide open on the field of Social Robots. In all the cases
(haar like features face detection, skin color hand detection,
gesture recognition with LMA), our DBS approach shown
to improve the performance and the results.

It is known that gesture recognition and Laban Movement
Analysis can provide us a good passive interaction. We
concluded here that horopter based dynamic background
segmentation can improve the performance, effectiveness
and interactivity of the system in a mobile platform. Even

thought, the concept of interactivity goes beyond reactive
and passive movements. Taking this into account, we want
to explore the area of learning and active behavior decision
on robotics. Likewise, future work will certainly lead us
to model a Bayesian network of behavior and stimulus,
and to train this network using the approach for interaction
presented on this paper.
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