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Unified Kinematics
and Singularity Analysis
of a Metamorphic Parallel
Mechanism With Bifurcated
Motion
This paper introduces a new metamorphic parallel mechanism consisting of four recon-
figurable rTPS limbs. Based on the reconfigurability of the reconfigurable Hooke (rT)
joint, the rTPS limb has two phases while in one phase the limb has no constraint to the
platform, in the other it constrains the spherical joint center to lie on a plane. This results
in the mechanism to have ability of reconfiguration between different topologies with
variable mobility. Geometric constraint equations of the platform rotation matrix and
translation vector are set up based on the point-plane constraint, which reveals the bifur-
cated motion property in the topology with mobility 2 and the geometric condition with
mobility change in altering to other mechanism topologies. Following this, a unified kine-
matics limb modeling is proposed considering the difference between the two phases of
the reconfigurable rTPS limb. This is further applied for the mechanism modeling and
both the inverse and forward kinematics is analytically solved by combining phases of
the four limbs covering all the mechanism topologies. Based on these, a unified singular-
ity modeling is proposed by defining the geometric constraint forces and actuation forces
in the Jacobian matrix with their change in the variable topologies in terms of constraint
screws. Analysis of workspace with singularity distribution is carried out using this model
and corresponding singularity loci are obtained with special singular configurations
illustrated. [DOI: 10.1115/1.4024292]

Keywords: parallel mechanism, reconfiguration, unified kinematics, workspace,
singularity

1 Introduction

Inheriting the advantages of traditional parallel mechanisms in
terms of high load-carrying capacity, good positioning accuracy
and low inertia [1], metamorphic parallel mechanisms (MPMs)
[2] also possess adaptability and reconfigurability to change per-
manent finite mobility based on the topological structure change.
Metamorphic parallel mechanisms can replace the traditional ones
in real applications with benefits of configuration change for spe-
cial workspace requirements, operation mobility change or energy
saving in the industry and other areas. The 4rTPS metamorphic
parallel mechanism introduced in this paper has ability of mobility
change from 2 to 6, bifurcated rotation about two orthogonal axes
and symmetrical mechanism structure. These properties make this
mechanism suitable for some applications in industry machining,
product assembly, motion simulation, and human joint rehabilita-
tion with requirements of mobility change and separate rotation
motions in two orthogonal directions, like training on the two
rotations (inversion/eversion and flexion/extension) of ankle reha-
bilitation, machining, simulation, and assembly in two perpendic-
ular planes.

Proposed from the study of decorative carton folds and recon-
figurable packaging [3], metamorphic mechanisms have attracted
much interest in the mechanism research due to their novel prop-
erty of reconfiguration and mobility change. These include kine-
matotropic linkages with variable position parameters [4],

orthoplanar metamorphic mechanisms [5], metamorphic under-
water vehicle [6], metamorphic ways of changing the topological
structures of a mechanism[7], topology description of various mo-
bility configurations of metamorphic mechanisms using matrix
operations [8], variable topologies of kinematic joints and their
topological representation [9,10], kinematotropic parallel mecha-
nisms with variable motions [11], reconfigurable parallel robot
[12], and a family of parallel mechanisms that have multiple oper-
ation modes [13]. Recent work is on a metamorphic multifingered
hand with an articulated palm [14], methodology for synthesis and
configuration design of metamorphic mechanisms based on bio-
logical modeling and genetic evolution [15], a metamorphic paral-
lel mechanism with ability of performing phase change and
orientation switch [16].

Based on a newly invented reconfigurable Hooke (rT) joint [2],
various metamorphic parallel mechanisms [2,17] have been pre-
sented with a general construction method introduced using screw
theory [18]. This leads to the work of this paper of a new meta-
morphic parallel mechanism consisting of reconfigurable rTPS
limbs. In the one phase, the rTPS limb has mobility 6 while it sup-
plies one constraint force in the other phase which can be geomet-
rically interpreted as constraining a point of the platform to lie on
a plane. This point-plane constraint was studied by Wampler [19]
in workspace analysis of a 3-degrees of freedom (DOF) tripod
mechanism and Selig [20] in instantaneous kinematics of parallel
mechanisms using dual quaternions. The point-plane constraint
was also called planar-spherical bond by Karouia and Hervé [21]
with a serial arrangement of a planar kinematic bond and a spheri-
cal bond. Various planar-spherical serial chains were illustrated
with mobility analysis based on Lie group theory and were used
for parallel mechanism construction [22,23].
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The metamorphic parallel mechanism investigated in this paper
has an interesting property of bifurcated rotation motion in the topol-
ogy with mobility 2. Bifurcated motion [24,25] is the phenomenon
that the mechanism motion has two branches when it passes through
the constraint singularity [26,27], resulting in different mobility and
scope of motion. Similar to this topology with mobility 2, [28] used
the 4RPS parallel mechanism in the exoskeleton of the shoulder part
with different shapes between the platform and the base [29]. Pro-
posed a 4RbRPS parallel mechanism (where Rb denotes a lockable
revolute joint at any time during operation through a brake) with
limbs that can change between equivalent universal joint-prismatic
joint-spherical joint (UPS) and revolute joint-prismatic joint-spheri-
cal joint (RPS). Motion planning was investigated considering the
transition among different configurations by locking different Rb

joints on the base. With different focus, bifurcated motion was not
revealed in the previous research.

Following the structure synthesis and mobility analysis, the next
important topics are kinematics and singularity analysis which are
the base for further dynamic investigation and mechanism applica-
tions. While inverse kinematics is easy, forward kinematics of a par-
allel mechanism is considered as a very complex problem due to the
fact that it normally leads to high order polynomial equations with
multisolutions [30,31]. Analytically solving the forward kinematics
by obtaining the univariant equation with one unknown is the idea
result as it gives straightforward solutions and the inter-relations for
variable geometry parameters. Since a metamorphic parallel mecha-
nism has several topologies with different mobility, each of them is a
traditional parallel mechanism. Thus, to get a unified kinematics
modeling is a big challenge by covering all the mechanism topolo-
gies and solving each one analytically. In this paper, based on the dif-
ference between the two phases of the reconfigurable rTPS limb, a
unified kinematics limb modeling is proposed. This is further applied
for the mechanism modeling, based on which forward kinematics
analysis with univariant equations in one unknown are obtained by
combining phases of the four limbs corresponding to various topolo-
gies. The unified kinematics modeling method can be used for other
metamorphic parallel mechanisms consisting of rTPS limbs.

Following the kinematics analysis, a unified singularity model-
ing to cover all the reconfigurable topologies is presented based
on constraint screws. In parallel mechanism research, singularity
analysis [32,33] is an important topic as singularities will make
the mechanism dysfunctional and uncontrollable which should be
avoided and considered before parameter design for real applica-
tions. Many methods have been proposed for singularity analysis,
including Jacobian-determinant-based numerical methods [34],
Jacobian-rank-based analytical models [32,35], screw theory
[36,37], line geometry, and Grassmann–Cayley algebra [38,39].
Considering the variable topologies of the metamorphic parallel
mechanism in this paper, screw theory shows a good way to for-
mulize a unified Jacobian matrix to include both geometric con-
straints and actuation constraints with change between them in the
reconfiguration while the size is kept 6 by 6. The method intro-
duced in this paper can be extended to other parallel mechanisms
with variable topologies and mobility.

The paper is arranged in the following structure. Section 2
introduced the reconfigurable rTPS limb with two phases and their
geometric modeling. Starting from a topology with bifurcated
motion in Sec. 3, geometric constraints are set up for the mobility
analysis, and then various topology reconfigurations are illustrated
and analyzed in Sec. 4. Based on this, Sec. 5 proposes a unified
limb kinematics modeling and solves both inverse and forward ki-
nematics analytically for all the topologies. The unified Jacobian
matrix is presented in Sec. 6 with constraint screw changes in
workspace analysis with singularity distribution in variable topol-
ogies. Conclusions are summed in Sec. 7.

2 Two Phases of the Reconfigurable rTPS Limb

The reconfigurable rTPS limb consists of a reconfigurable
Hooke (rT) joint, a prismatic joint, and a spherical joint. The

reconfigurability of this limb stems from the configuration change
of the rT joint which has two rotational DOFs about two perpen-
dicularly intersecting rotational axes (radial axis and bracket axis)
as in Fig. 1. A grooved ring is used to house the radial axis and
make it have the ability of altering its direction by rotating and
fixing freely along the groove. This allows the radial rotation axis
change with respect to the limb, resulting in two typical phases of
the rTPS limb as in Fig. 1. While in Fig. 1(a), the radial axis is
perpendicular to the limb (prismatic joint) which is denoted as
(rT)1PS, it is collinear with the limb (prismatic joint) passing
through the spherical joint center in Fig. 1(b) and the limb phase
is symbolized as (rT)2PS.

Set an arbitrary coordinate system oxyz as in Fig. 1(a). Let
points A and B denote the spherical joint center and the rT joint
center, respectively, a and b denote the vectors of points A and B
in the oxyz coordinate system. Let the distance between A and B is
h, then the geometric constraint of the (rT)1PS limb is given as

a! bð Þ2¼ h2

a! bð Þ%n ¼ hcosð/1 þ p=2Þ
ð a! bð Þ ! ð a! bð Þ%nÞnÞ%n0

a! bð Þ ! ð a! bð Þ%nÞnk k
¼ cos/2

8
>>><

>>>:
(1)

which shows that position of the spherical joint center A is deter-
mined by stroke (h) of the prismatic joint and rotational angles
(radial axis angle /1 and bracket axis angle /2) of the rT joint as
in Fig. 1, where /1 is between the limb and its projection on
plane

P
passing through AB and perpendicular to the bracket axis

(n) of the rT joint, n0 is a reference line passing through rT joint
center B and perpendicular to n. This describes the forward kine-
matics of the limb. Inversely, stroke (h) and rotational angles (/1

and /2) can be calculated directly from Eq. (1) when the spherical
joint center A is known.

For the (rT)2PS limb as in Fig. 1(b), radial axis of the rT joint is
collinear with the prismatic joint passing through the spherical
joint center A. Thus, the spherical joint center A cannot move out
of the plane

P
. Geometric constraint of the (rT)2PS limb is given

as

a! bð Þ2¼ h2

a! bð Þ%n ¼ a%n! d ¼ 0
a! bð Þ%n0 ¼ hcos/2

8
<

: (2)

which shows that position of the spherical joint center A is deter-
mined by stroke (h) of the prismatic joint and bracket axis angle
(/2) of the rT joint. d is the distance from the coordinate system
center o to plane

P
. Equation (2) describes both forward and

inverse kinematics of the (rT)2PS limb.
From Eqs. (1) and (2) it can be seen that the (rT)2PS limb has

one degree of freedom less than the (rT)1PS limb as it has one
more constraint. In fact, the (rT)1PS limb has six DOFs and the
(rT)2PS limb has five [2]. When constructing parallel mechanisms

Fig. 1 Two phases of the rTPS limb (a) (rT)1PS and (b) (rT)2PS
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with the rTPS limbs, the mechanisms will have ability of mobility
change by altering the rTPS limbs into these two phases.

3 The 4(rT)2PS MPM With Bifurcated Motion

The 4(rT)2PS metamorphic parallel mechanism consisting of
four (rT)2PS limbs is shown in Fig. 2, in which the four limbs are
arranged symmetrically on a circle with radius ra on the platform
and a circle with radius rb on the base. Let Ai be the center point
of the spherical joint and Bi be the rT joint center in limb i as Fig.
2. Locate a fixed coordinate system Oxyz at the geometric center
O of the square B1B2B3B4 with x-axis passing through B1 and y-
axis passing through B2. Similarly, attach a platform coordinate
system Guvw at the geometric center G of square A1A2A3A4 with
u-axis passing through A1 and v-axis passing through A2. Based
on the geometric constraint in Eq. (2), the spherical joint centers
Ai are constrained in their own planes

ai%ð0;1;0ÞT ¼ ðRa0i þ pÞ%ð0;1;0ÞT ¼ 0 ði ¼ 1;3Þ
aj%ð1;0;0ÞT ¼ ðRa0j þ pÞ%ð1;0;0ÞT ¼ 0 ðj ¼ 2;4Þ

(
(3)

where a0i is the vector of Ai expressed in the platform coordinate
system Guvw and can be given as a01 ¼ !a03 ¼ rað1;0;0ÞT,
a02 ¼ !a04 ¼ rað0;1;0ÞT, R 5 (u, v, w), and p¼ (px, py, pz)

T are the
transformation matrix and the translation vector of platform coor-
dinate system Guvw with respect to the fixed coordinate system
Oxyz, u, v, w are unit vectors of the axes of platform coordinate
system Guvw expressed in the fixed coordinate system Oxyz with
u¼ (ux, uy, uz)

T, v¼ (vx, vy, vz)
T, and w¼ (wx, wy, wz)

T.
From Eq. (3) and the above assumption, there is

ða1 ! a3Þ ¼ Rða01 ! a03Þ%ð0;1;0Þ
T ¼ rau%ð0;1;0ÞT ¼ rauy ¼ 0

ða2 ! a4Þ ¼ Rða02 ! a04Þ%ð1;0;0Þ
T ¼ rav%ð1;0;0ÞT ¼ ravx ¼ 0

!

(4)

Thus, there is vx¼ 0 and uy¼ 0, substituting these into the or-
thogonal property of matrix R leads to the following:

uxvx þ uyvy þ uzvz ¼ uzvz ¼ 0 (5)

The above equation presents two possible rotations but cannot
be simultaneously executed. This leads to two bifurcated rotations
and a home position based on three motion possibilities. They are
home position when uz¼ vz¼ 0 with rotation matrix R becoming
the identity matrix I, branch 1 motion as uz¼ 0, vz= 0 with R as
a pure rotation about x-axis and branch 2 motion as uz= 0, vz¼ 0
with R as a pure rotation about y-axis. This indicates whenever if
the platform tilts to one direction from the constraint singularity,
it falls into that directional rotation. Vice vase, when the platform
tilts to another direction, it falls into another directional rotation.
These two motions cannot be executed simultaneously.

Expanding Eq. (3) when i¼ 1 and j¼ 2, there is

ðRa01 þ pÞ%ð0;1;0ÞT ¼ rauy þ py ¼ py ¼ 0

ðRa02 þ pÞ%ð1;0;0ÞT ¼ ravx þ px ¼ px ¼ 0

(
(6)

which determines the property of the translation vector p with ele-
ments on x-axis and y-axis being zeros.

From the above analysis, it can be concluded that the four geo-
metric constraints in Eq. (3) lead to two rotational constraints in
Eq. (4) and two translational constraints in Eq. (6). Thus, the
mechanism has one translation along z-axis and one rotation, a
pure rotation either about x-axis or y-axis, bifurcated based on
Eq. (5).

4 Topology Change Based Reconfiguration of the
4(rT)2PS MPM

When altering the limb phases from (rT)2PS to (rT)1PS, the
4(rT)2PS parallel mechanism will change to different topologies
with variable mobility. First, changing the phase of limb 1, the
mechanism becomes the topology 3(rT)2PS-1(rT)1PS as in Fig.
3(a). Based on the geometric relation in Eq. (1), there will be one
geometric constraint less in the mechanism in Eq. (3) by reducing
i¼ 1 for limb 1. Then, the relation can be given as

rauy þ py ¼ 0
ravx þ px ¼ px ¼ 0
vx ¼ 0

8
<

: (7)

which shows that the there is one constraint for the rotation with
vx¼ 0 and two constraints for the translation with px¼ 0 and py

depending on the rotation. Thus, the 3(rT)2PS-1(rT)1PS parallel
mechanism has mobility three with two rotations and one
translation.

When further changing the phase of limb 2, the mechanism
becomes the topology 2(rT)2PS-2(rT)1PS as in Fig. 3(b). Hence,
one more constraint vanishes in Eq. (3) and the geometric con-
straints become

rauy þ py ¼ 0
ravx þ px ¼ 0

!
(8)

which presents that the translation elements px and py depend on
the platform rotation and there is no constraint on the rotation ma-
trix. Thus, the 2(rT)2PS-2(rT)1PS parallel mechanism has mobility
four with three rotations and one independent translation along z-
axis.

Following the above, a new topology 1(rT)2PS-3(rT)1PS will
be obtained by changing the phase of limb 3 as in Fig. 3(c). In this
case, only the second constraint in Eq. (8) is left, indicating that
translation elements px can be determined by the platform

Fig. 2 The 4(rT)2PS MPM with bifurcated motion

Fig. 3 Variable topologies of the 4(rT)PS MPM (a) 3(rT)2PS-
1(rT)1PS (1T2R), (b) 2(rT)2PS-2(rT)1PS (2T2R), (c) 1(rT)2PS-
3(rT)1PS (2T3R), and (d) 4(rT)1PS (3T3R)
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rotation. Thus, the new mechanism has five degrees of freedom
with one translation along x-axis constrained.

Finally, after further changing the forth limb into phase
(rT)1PS, the mechanism becomes the topology 4(rT)1PS as in Fig.
3(d) with full mobility 6 as there is no geometric constraints for
the platform by the limbs.

From this, it can be seen that the limb phases determine the to-
pology and mobility of the mechanism. It is worth noticing that
when changing the limb phases in different orders, the mechanism
can have different topologies with those in Fig. 3. For example, in
the reconfiguration from topology 3(rT)2PS-1(rT)1PS in Fig. 3(a)
to 2(rT)2PS-2(rT)1PS in Fig. 3(b), when altering the phase of limb
3 instead of limb 2, the mechanism becomes a new topology
2(rT)2PS-2(rT13)1PS with mobility four of two translations and
two rotations. Here, rT13 is used to indicate that the (rT)1PS
phases are from limb 1 and limb 3. Based on this, all the topolo-
gies with variable mobility are concluded in Table 1, in which
1Rx/y represents the bifurcated rotation about x-axis or y-axis,
2Rxy means two rotations about x-axis and y-axis, 1Tz, 2Txz, and
2Tyz indicate 1 or 2 translations along the corresponding axes in
the subscripts. In Table 1, any two mobility types can be changed
into each other directly by changing corresponding limb phases.
For example, when changing the phases of limb 2 and limb 4
from (rT)2PS to (rT)1PS in 4(rT)2PS, the topology can be directly
change into 2(rT)2PS-2(rT24)1PS with mobility 2Tyz2Rxy. When
further altering the other two limb phases to (rT)1PS, the mecha-
nism becomes directly to 4(rT)1PS with full mobility 3T3R. The
inverse phase change also works.

5. Unified Kinematics Modeling and Displacement
Analysis

In the rTPS limb, there are three single DOF joints that can be
selected as actuated joints, including the two rotational joints of
the rT joint and the prismatic joint. The actuation scheme requires
that the selected actuations can determine the platform position
and orientation with finite forward kinematics solutions. Based on
these, it can be found that any actuation selection from the three
single DOF joints in the four limbs of the 4rTPS metamorphic
parallel mechanism with corresponding number of mechanism
mobility can satisfy the actuation scheme requirement except the
case of 4(rT)2PS with bifurcation which requires that the inputs
should be from two adjacent limbs. Considering the simplicity of
kinematics analysis and that prismatic joints give better force
transmission than revolute joints, the four prismatic joints in the
mechanism and the two radial rotational joints in limb 1 and limb
2 are selected as the actuated joints corresponding to variable top-
ologies. For mobility n (2' n' 4), n prismatic joints will be
active, while 4-n prismatic joints and the two radial joints are pas-
sive. When the mechanism is in mobility 5, the four prismatic
joints with one of the two radial joints will be active. All the six
joints are active when coming to mobility 6.

5.1 Unified Limb Kinematics Modeling. For limb 1 and
limb 2, when they are in the phase (rT)2PS, their prismatic joints
are chosen as the actuations. When they are altered into phase

(rT)1PS, by further selecting the radial axis rotation as the input, a
unified kinematics model can be obtained. This is due to the dif-
ference between the two phases of the rTPS limb as in Fig. 1. It
can be taken as that the (rT)1PS limb has variable radial axis angle
/1, while the (rT)2PS limb has a fixed angle /1¼ 0. Geometri-
cally, spherical joint center A is constrained on plane

P
/1 pass-

ing through the spherical joint center and perpendicular to the
bracket axis for a giving angle /1 in the (rT)1PS limb and it is
constrained on plane

P
0 passing through the rT joint center and

perpendicular to the bracket axis in the (rT)2PS limb as in Fig. 4.
Based on the above analysis and the coordinate systems of the

3rTPS metamorphic parallel mechanism in Figs. 4 and 2, the geo-
metric constraint of the mechanism relating to limb 1 and limb 2
can be expressed in the fixed coordinate system Oxyz by covering
their two phases as

a1 ¼ b1 þ Rðz;p=2Þl1ð!sin/11;cos/11cos/12;cos/11sin/12Þ
a2 ¼ b2 þ Rðz;pÞl2ð! sin/21;cos/21cos/22;cos/21sin/22Þ

!

(9)

where li and /i1 are the length and radial rotation angle of limb i
separately, /i1¼ 0 for (rT)2PS and it is an unknown for (rT)1PS.
R(k, g) represents a rotation about axis k with angle g and is used
to translate the vector of the spherical joint center in the limb
coordinate systems to the global coordinate system in Fig. 2.

For limb 3 and limb 4, when they are in the phase (rT)2PS, no
actuation is selected from them. When they are altered into phase
(rT)1PS, their prismatic joints will be the actuated joints. Thus,
the kinematics modeling is

ða3 ! b3Þ%ða3 ! b3Þ ¼ l2
3; ða4 ! b4Þ%ða4 ! b4Þ ¼ l2

4 ðrTÞ1PS
a3%ð0;1;0ÞT ¼ 0; a4%ð1;0;0ÞT ¼ 0 ðrTÞ2PS

!

(10)

where a3 ¼ ðx3;y3;z3ÞT; a4 ¼ a1 þ a3 ! a2.
By combining the above limb models in different phases, all

the kinematics modeling of the reconfigurable topologies of the
4rTPS metamorphic parallel mechanism can be obtained. They
can be solved inversely and forwardly in the following way.

5.2 Inverse and Forward Kinematics Analysis

5.2.1 Inverse Kinematics Analysis The inverse displacement
analysis of the 4rTPS metamorphic parallel mechanism is to
obtain the actuation parameters (limb length li, radial-axis rotation
angle /i1) based on the given platform position and orientation.

Table 1 Variable topologies and mobility of the 4rTPS

Mobility DOFs Topologies

2 1Tz1Rx/y 4(rT)2PS
3 1Tz2Rxy 3(rT)2PS-1(rTi)1PS (i¼ 1,2,3,4)
4 2Txz2Rxy 2(rT)2PS-2(rT13)1PS

2Tyz2Rxy 2(rT)2PS-2(rT24)1PS
1Tz3R 2(rT)2PS-2(rTij)1PS (i¼ 1,3, j¼ 2,4)

5 2Txz3R 1(rTi)2PS-3(rT)1PS (i¼ 2,4)
2Tyz3R 1(rTi)2PS-3(rT)1PS (i¼ 1,3)

6 3T3R 4(rT)1PS
Fig. 4 Unified limb modeling
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Based on Eqs. (3), (9), and (10), the inverse kinematics can be
solved directly as

li ¼ Ra0i þ p! bi

"" "" ði ¼ 1;2;3;4Þ
/11 ¼ sin!1 ðRðz;! p=2Þ%ðRa01 þ p! b1Þ%ð1;0;0ÞTÞ
/21 ¼ sin!1 ðRðz;! pÞ%ðRa02 þ p! b2Þ%ð1;0;0ÞTÞ

8
><

>:
(11)

These solutions of the inverse kinematics cover all the configu-
rations and can be used directly corresponding to the topology
requirements of the actuation.

5.2.2 Forward Kinematics. On the contrary to the inverse
displacement analysis, the forward one is to solve the platform
position p and orientation R when giving the corresponding actua-
tion parameters (li, /i1) for each topology. Based on Eq. (9), limb
1 and limb 2 are unified in the kinematics modeling with consider-
ation of two phases. Then, the forward kinematics can be divided
into three cases by considering the limb phases of limb 3 and limb
4.

Case 1: Limb 3 and limb 4 both in phase (rT)2PS. Based on the
geometric structure of the platform, there are

ð
ffiffiffi
2
p

raÞ2 ¼ ða1 ! a2Þ2

ð2raÞ2 ¼ ða1 ! a3Þ2

2
ffiffiffi
2
p

r2
acosðp=4Þ ¼ ða2 ! a1Þ%ða3 ! a1Þ

a3%ð0;1;0ÞT ¼ 0

ða1 þ a3 ! a2Þ%ð1;0;0ÞT ¼ 0

8
>>>>>><

>>>>>>:

/i1 ðrTÞ1PS

/i1 ¼ 0 ðrTÞ2PS

!

(12)

where the first two represent the distances from spherical joint A1

to A2 and A3, the third one describes the angle ffA2A1A3¼ p/4, the
fourth and the fifth are from Eq. (10) for the spherical joint centers
of limb 3 and limb 4 constrained on their own planes.

Substituting Eqs. (9) and (10) into Eq. (12) there is

f1ð/12;/22Þ ¼ 0

f2ð/12;1;x3;y3;z3;x2
3;y

2
3;z

2
3Þ ¼ 0

f3ð/12;/22;x3;y3;z3Þ ¼ 0

f4ðy3Þ ¼ y3 ¼ 0

f5ð/12;/22;x3;y3;z3Þ ¼ 0

8
>>>>>><

>>>>>>:

(13)

where fi()) is a function of the power products in the bracket.
The last three equations in Eq. (16) are linear functions of (x3,

y3, z3), thus they can be linearly solved. Substituting the results
into f2 and replacing cos/i2¼ (1! ti

2)/(1þ ti
2), sin/i2¼ 2ti/

(1þ ti
2) in f1 and f2, there is

f6ð1; t2
1; t

2
2; t1t2; t2

1t22Þ ¼ 0

f7ð1; t2
1; t

4
1; t

6
1; t

i
1tj

2; :::; t
6
1t4

2Þ ¼ 0ðj 6¼ 0Þ

(
(14)

where f6 and f7 are linear functions of the power products in the
bracket with their coefficients depending on the input parameters
only. ti is Tan(/i2/2).

By using Sylvester’s dialytic elimination method [40] for the
two equations in Eq. (14), a polynomial with only unknown t1 can
be obtained as

Xþ10

i¼0

h1it
2i
1 ¼ 0 (15)

where coefficient h1i are real constants depending on input data
only.

This shows that a univariate equation in t1 of degree 20 is
obtained.

Solving Eq. (15), 20 solutions for t1 can be obtained. Then, t2 can
be solved by substituting each solution of t1 back to the equations in
Eq. (14) and solving the common roots. Following this, (x3, y3, z3)
can be linearly solved by substituting each pair of solutions of t1, t2,
and t3 into the last three equations in Eq. (13). Based on this, 20 sets
of solutions of t1, t2, t3 and (x3, y3, z3) are obtained and the spherical
joint center Ai can be calculated by substituting /i2¼ 2ArcTan(ti)
into Eqs. (9) and (10). Then, the platform position and orientation
can be determined using the three spherical joint centers as

u ¼ ða1 ! a2Þ= ða1 ! a2Þj j
v ¼ ð2a3 ! a1 ! a2Þ= ð2a3 ! a1 ! a2Þj j
w ¼ u* v;R ¼ ðu;v;wÞ;p ¼ a1 ! rau

8
<

: (16)

The real roots correspond to assembly configurations of the
3rTPS parallel mechanism.

Case 2: One of limb 3 and limb 4 is in phase (rT)1PS. Based on
the above analysis, when limb 3 (or limb 4) is in phase (rT)1PS,
the geometric constraints is the same with Eq. (12) by replacing
the fourth (or fifth equation) with ða3 ! b3Þ % ða3 ! b3Þ ¼ l2

3 (or
ða4 ! b4Þ % ða4 ! b4Þ ¼ l24). For both case there is

f 08ð1;x3;y3;z3;x
2
3;y

2
3;z

2
3Þ ¼ 0 (17)

It is found that f2 and f 08 are linear functions of (x2
3;y

2
3;z

2
3) with

their coefficients 1. Then a new equation can be obtained from
these two by reducing (x2

3;y
2
3;z

2
3) as

f 082ð/12;1;x3;y3;z3Þ ¼ 0 (18)

Thus, (x3, y3, z3) can be linearly solved from f3, f5 in Eq. (13)
and f 082 in Eq. (18). Following the same procedure for Eq. (14),
there is

f6ð1;t2
1;t

2
2;t1t2;t21t2

2Þ ¼ 0

f 07ð1;t2
1;t

4
1;t

6
1;t

8
1;t

i
1tj

2;:::;t
8
1t4

2Þ ¼ 0ðj 6¼ 0Þ

(
(19)

It can be seen that f 07 is two order higher than f7 in terms of t1.
This is because the order change of the geometric constraints of
limb 3 (or limb 4) from 1 with the angle constraint in phase
(rT)2PS to 2 with limb length constraint in phase (rT)1PS.

Similarly, using Sylvester’s dialytic elimination method [40]
for the two equations in Eq. (19), a polynomial with only
unknown t1 can be obtained as

Xþ12

i¼0

h2it
2i
1 ¼ 0 (20)

where coefficient h2i are real constants depending on input data only.
This shows a univariate equation in t1 of degree 24 is obtained

which is four order higher than Eq. (15) due to the phase change
of limb 3 (or limb 4). The other procedures can follow those in
case 1.

Case 3: Limb 3 and limb 4 are both in phase (rT)1PS. Based on
the above analysis, when limb 3 and limb 4 are both in phase
(rT)1PS, the geometric constraints is the same with Eq. (12) by replac-
ing the fourth and the fifth equations with ða3 ! b3Þ%ða3 ! b3Þ ¼ l23
and ða4 ! b4Þ%ða4 ! b4Þ ¼ l24, respectively. There are

f 04ð1; x3; y3; z3; x2
3; y

2
3; z

2
3Þ ¼ 0

f 05ð1; x3; y3; z3; x2
3; y

2
3; z

2
3Þ ¼ 0

(

(21)

As f2, f 04, and f 05 are linear functions of (x2
3;y

2
3;z

2
3) with their coef-

ficients 1. Then two new equations can be obtained from these
two by reducing (x2

3;y
2
3;z

2
3) as
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f 042ð/12;1;x3;y3;z3Þ ¼ 0

f 052ð/12;1;x3;y3;z3Þ ¼ 0

!
(22)

Thus, (x3, y3, z3) can be linearly solved from f3 in Eq. (13) and
f 042, f 052 in Eq. (22). Following the same procedure for Eq. (14),
there is

f6ð1;t21;t22;t1t2;t2
1t2

2Þ ¼ 0

f9ð1;t21;t41;t6
1;t

8
1;t

i
1tj

2;:::;t
8
1t82Þ ¼ 0 ðj 6¼ 0Þ

(

(23)

It can be seen that f9 is two order higher in terms of t1 and four
order higher in terms of t2 than f7. This is because the order
change of the geometric constraints of both limb 3 and limb 4
from 1 with the angle constraint in phase (rT)2PS to 2 with limb
length constraint in phase (rT)1PS.

Following Sylvester’s dialytic elimination method [40] for the
two equations in Eq. (23), a polynomial with only unknown t1 can
be obtained as

Xþ16

i¼0

h3it
2i
1 ¼ 0 (24)

where coefficient h3i are real constants depending on input data
only.

This shows a univariate equation in t1 of degree 32 is obtained
which is 12 order higher than Eq. (15) and eight order higher than
Eq. (20) due to the phase change of limb 3 and limb 4. The other
procedures can follow those in case 1.

The above procedures solve forward kinematics of all the topol-
ogies of the 4rTPS metamorphic parallel mechanism. It can be
seen that with the mobility increasing due to topology change, the
forward kinematics polynomials has higher order in terms of the
unknowns.

6 Unified Singularity Modeling With Workspace
Analysis

The infinitesimal twist of the moving platform of the 3(rT)PS
parallel mechanism can be written as the linear combination of in-
stantaneous twists of each limb

SG¼ _/i1Si1þ _/i2Si2þ _liSi3þ _/i4Si4þ _/i5Si5þ _/i6Si6 ði¼ 1;2;3;4Þ
(25)

where SG represents the infinitesimal twist of the moving plat-
form, Sij (j¼ 1,2,3,4,5,6) denotes the unit screw of the jth 1-DOF
joint in limb i, _li is the distance rate of the prismatic joint in limb
i, _/ij (j¼ 1,2,4,5,6) represent angular rates of the rT joint and
spherical joint in limb i.

Based on the kinematics analysis in Sec. 5, the translation of
the prismatic joint is chosen as the input for limb 1 and limb 2 in
the phase (rT)2PS and the rotation about the radial axis is taken as
the second actuation when the limb changes to phase (rT)1PS.
There is no actuation input from limb 3 and limb 4 when they are
in phase (rT)2PS and their prismatic joints are actuated in the
phase (rT)1PS. Thus by locking the active joints in the limbs tem-
porarily and taking the reciprocal product on both sides of Eq.
(25), for limb 1 and limb 2 there is

Sr
i1 Sr

i2½ ,T-SG¼
0 _li

$ %T ðrTÞ2PS limb

_/i1
_li

$ %T ðrTÞ1PS limb

(

ði¼ 1;2Þ (26)

where Sr
i1 is the reciprocal screws of geometric constraint to all

motion screws in limb i in phase (rT)2PS and it passes through the
spherical joint center with the direction parallel to the bracket axis
of the rT joint [2]. Sr

i1 becomes the actuation screw reciprocal to

all the motion screws in Eq. (25) except the actuation joint Si1 in
phase (rT)1PS and it passes through the spherical joint center with
direction perpendicular to both the limb and the radial axis of the
rT joint. Sr

i2 is the actuation screw reciprocal to all in Eq. (25)
except the prismatic joint screw Si3 in both limb phases and it is
collinear with the limb.

For limb 3 and limb 4 there is

Sr
j1 - SG ¼

0 ðrTÞ2PS limb
_lj ðrTÞ1PS limb

!
ðj ¼ 3;4Þ (27)

where Sr
j1 is the reciprocal screws of geometric constraint to all

motion screws in limb j in phase (rT)2PS and it has the direction par-
allel to the bracket axis of the rT joint and passing through the spheri-
cal joint center. Sr

j1 becomes the actuation screw reciprocal to all the
motions screws in Eq. (25) except the actuated prismatic joint Si3 in
phase (rT)1PS and with direction collinear with the limb.

Equations in (26) and (27) for the four limbs can be rewritten in
matrix form as

Sr
11

Sr
12

Sr
21

Sr
22

Sr
31

Sr
41

2

666666664

3

777777775

- SG ¼ JSG ¼

M1

b1 * u1 u1

M2

b2 * u2 u2

M3

M4

2

666666664

3

777777775

SG ¼

g1

_l1

g2

_l2

g3

g4

2

666666664

3

777777775

(28)

where

forðrTÞ2PS :
Mi ¼ ai * y y½ ,;gi ¼ 0;
Mj ¼ aj * x x½ ,;gj ¼ 0;
ði ¼ 1;3;j ¼ 2;4Þ

8
<

:

forðrTÞ1PS :
Mi ¼ ai * ðui * uirÞ ui * uir½ ,;gi ¼ _/i1;
Mj ¼ bj * uj uj½ ,;gj ¼ _lj;
ði ¼ 1;2;j ¼ 3;4Þ

8
<

:

where x¼ [1,0,0]T, y¼ [0,1,0]T, ui is the unit vector of the limb
direction, and uir is the unit vector of the radial axis.

Thus, J is the 6 by 6 Jacobian matrix. In general, the Jacobian
matrix maps the velocities between the manipulator and the actua-
tion input. Once the manipulator meets the singular configuration,
this mapping loses its function and the rank of the Jacobian matrix
decreases to be less than 6. This can be also interpreted that the
six constraint forces in J are linearly dependent. Inversely, identi-
fying the dependent conditions for the constraint forces in the
workspace will reveal the singular configurations of the manipula-
tor. In order to demonstrate this, some numerical parameters with
physical constraints are given as: the platform radius ra¼ 10 cm,
base radius rb¼ 20 cm, spherical joint rotation angle' p/4 radian,
bracket-axis rotation angle /i1' 7p/18 radian, radial axis rotation
angle /i2'p/2 radian, limb length 11 cm ' li' 22 cm.

6.1 Workspace and Singularity Analysis of the 4(rT)2PS
(2DOF). The 4(rT)2PS parallel mechanism has two bifurcated
rotations about x and y axes with an independent translation along
z-axis. Based on the given physical parameters above, the work-
space of this mechanism is demonstrated in Fig. 5(a), in which the
blue parts represent the singularities identified using the Jacobian
matrix in Eq. (28) consisting of two actuation forces and four geo-
metric constraint forces. There are three kinds of singular configu-
rations with one that there is no rotation shown in the center
in Fig. 5(a). This is the home position in which the platform is
parallel to the base and the four geometric constraint forces from
the four limbs lie in the same plane as in Fig. 5(b), resulting in
one redundant and constraint singularity [26,27] in the home posi-
tion. Once the platform rotates, it involves into one rotation
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Fig. 5 Workspace and singular configurations of 4(rT)2PS (2DOF) (a) workspace
with singularity distribution, (b) singularity 1, (c) singularity 2, and (d) singularity 3

Fig. 6 Workspace and singularity locus of the 3(rT)2PS-1(rT)1PS (3DOF) (a) workspace with sin-
gularities (3D view), (b) workspace with singularities (top view), (c) singularity locus, (d) singu-
larity 4
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branch. As in Fig. 5(c), when the platform rotates about the x-axis
clockwise, a singularity occurs when the actuation force from limb 2
passing through the spherical joint center A4 in limb 4. In this case,
the two geometric constraint forces in limb 2 and limb 4 are parallel
to the line A1A3 and all the other four constraint forces intersect the
line A1A3, resulting in an instantaneous free rotation about the line
A1A3 with the singular Jacobian of rank five. This is similar when the
platform rotates about the y-axis as shown in Fig. 5(d).

6.2 Workspace and Singularity Analysis of the 3(rT)2PS-
1(rT)1PS (3DOF). When altering the limb 1 from phase 2 to
phase 1, the parallel mechanism changes to the 3(rT)2PS-1(rT)1PS
with two rotational and one translational DOFs. The geometric
constraint force in limb 1 becomes the actuation constraint force
as in Eq. (28). Based on these, the workspace with singularities
are shown in Figs. 6(a) and 6(b) in 3D view and top view, respec-
tively. The singularity points are clearly located in the workspace
and a more detailed singularity locus is shown in Fig. 6(c). By
investigating the singularity configurations, it can be found that
the 3(rT)2PS-1(rT)1PS has all the singular configurations of the
4(rT)2PS in Fig. 5 with one more singular configuration existing
as in Fig. 6(d). This singularity is the general complex singularity
(Type 5a in Ref. [38]) in which there are six skew constraint forces
with one redundant leading to the Jacobian matrix of rank 5.

6.3 Workspace and Singularity Analysis of the 2(rT)2PS-
2(rT)1PS (4DOF). After further changing limb 2 from phase 2 to
phase 1, the mechanism becomes the 4DOF 2(rT)2PS-2(rT)1PS
with three rotational and one translational DOFs. In this case, the
six constraint forces in the Jacobian matrix come from two
geometric constraint forces in limb 3 and limb 4 with two actua-
tion forces in each of limb 1 and limb 2 as in Eq. (28). By investi-

gating the workspace with different rotations about the z-axis,
singularities in the workspace are shown in Table 2 with the same
coordinates in Figs. 5 and 6. When there is no rotation about z-
axis, the workspace with singularities is the same with that in
Figs. 6(a) and 6(b). When the platform rotates clockwise or anti-
clockwise about z-axis, the workspace becomes smaller with sin-
gularity distribution rotates as in Table 2. When rotating the
platform about z-axis from 0.2 to 0.3, the workspace also becomes
smaller with less singularity as shown the singularity loci in the
third column in Table 2. Comparing with the 3DOF case in Sec.
6.2, all the singular configurations are in the configurations of sin-
gularity 1 and singularity 4, while singularity 2 and singularity 3
are avoided when rotating the platform about z-axis.

6.4 Workspace and Singularity Analysis of the 1(rT)2PS-
3(rT)1PS (5DOF). Based on the 4DOF 2(rT)2PS-2(rT)1PS in
Sec. 6.3, by altering limb 3 from phase 2 to phase 1, the mecha-
nism becomes the 5DOF 1(rT)2PS-3(rT)1PS with three rotational
and two translational DOFs. The geometric constraint force paral-
lel to the y-axis in limb 3 becomes the actuation force along the
limb. This eliminates singularity 1 at the home position and singu-
larity 3 as in Fig. 5. The workspace with singularity distribution is
shown in Table 3 in terms of different rotations about z-axis and
different translations along y-axis. Due to the constraint force
change in limb 3, the singularity distribution changes a lot while
the workspace becomes a little different comparing with the
3DOF 3(rT)2PS-1(rT)1PS in Fig. 6. When the platform translates
along the y-axis to the negative side (py¼!3 in Table 3) without
rotating about the z-axis, the rotational workspace about the x-axis
(a) in clockwise becomes smaller, while the singularity keeps sim-
ilar in the remaining part as shown in Table 3. When there is rota-
tion about z-axis, the workspace becomes smaller with singularity
changes as in Table 3.

Table 2 Workspace and singularity loci of the 2(rT)2PS-2(rT)1PS

Workspace with singularities (3D view) Workspace with singularities (top view) Singularity loci

h¼ 0.2

h¼!0.2

h¼ 0.3
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In the workspace of the 5DOF 1(rT)2PS-3(rT)1PS parallel
mechanism, most singularities occur at the configurations similar
to singularity 4 in Fig. 6(d) with six skew constraint forces and
some in the configurations similar to singularity 2 in Fig. 6(c).
Furthermore, one more singular configuration is found as in Fig. 7
(Type 3b.2 in Ref. [37]). In this case, the plane formed by the par-
allel constraint forces from limb 2 and limb 4 passes through the
intersecting point of the two prismatic-joint-actuation forces in
limb 1 and limb 3. One of these four forces is redundant and the
Jacobian matrix has rank 5. It occurs when there are anticlockwise
pure rotations about the y-axis.

6.5 Workspace and Singularity Analysis of the 4(rT)1PS
(6DOF). After changing all the limb phases from 2 to 1, the
mechanism becomes the 4(rT)1PS parallel mechanism with all the

six DOFs and the six constraint forces in the Jacobian in Eq. (28)
are all actuation forces from the four limbs. In order to show and
compare the workspace, three samples are listed in Table IV with
3D view workspace and detailed singularity loci. When px¼ 0,
py¼ 0, and h¼ 0, the 4(rT)1PS has similar workspace with the
5DOF 1(rT)2PS-3(rT)1PS in Sec. 6.4 but with much different sin-
gularity distribution. Due to the change from geometric constraint
parallel to x-axis to actuation force along the limb in limb 4, the
singularities mainly happen when the platform rotates anticlock-
wise about x-axis and clockwise about y-axis as seen from the
top-view workspace in the first row in Table 4. By investigating
the singularities, it is found that most singular configurations
come from the singularity 4 case in Fig. 6(d) with six skew forces
and one redundant. Another singular configuration has all the six
constraint forces intersecting the A1A2 line, which is similar to sin-
gularity 2 and singularity 3 in Fig. 5 and the platform has an in-
stantaneous rotation about the A1A2 line. One more case as
singularity 6 in Fig. 8(a) is found at the home position when the
platform is parallel to the base with only translation along z-axis
and the four actuation forces along the four limbs intersecting at
one point, resulting one redundant.

When setting px¼ 0, py¼ 0, and pz¼ 10, the workspace with
three rotations and singularity distribution is shown in the second
row in Table 4. Similarly, the singularities mainly locate at the
side when the platform rotates anticlockwise about x-axis and
clockwise about y-axis. Singular configurations are also similar
with the first case in Table 4.

When setting all the rotations zero, the platform will experience
pure translations. However, the four actuation forces along the
four limbs always intersect at one point in this case as singularity

Table 3 Workspace and singularity loci of the 1(rT)2PS-3(rT)1PS

Workspace with singularities (3D view) Workspace with singularities (top view) Singularity loci

py¼ 0,h¼ 0

py¼!3,h¼ 0

py¼ 1,h¼ 0.2

Fig. 7 Singularity 5
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6 in Fig. 8(b). After rotating the platform about z-axis, the config-
urations are still under singularity due to the fact that the four
forces lie on the same regulus [38] with one redundant. The rota-
tion about x or y axes can help avoid this singular problem as
shown in the third row in Table 4 with a rotation (a¼ 0.2) about
x-axis. Most part of the workspace is singularity free while some
singularities exist when the platform translates to the positive side
of x-axis which causes singularity with six skew forces. The situa-
tion is similar when the platform rotates about y-axis.

The workspace and singularity analysis shows all the singular-
ities in the workspace which can be used to reduce singularities in
the design of the 4rTPS mechanism and free-singularity work-
space can be used in the application motion plan. Take the 2-DOF
bifurcated motion for example, singularities are found when the

platform is parallel to the base and when the platform rotates to
the positive sides of x-axis and y-axis as shown in Fig. 5(a). One
more actuator can be used to solve the constraint singularity when
the platform is parallel to the base, while the motion plan can
focus on the negative sides of x-axis and y-axis to avoid all the
singularities. This is the same for all the other topologies as shown
in Fig. 6 and Tables 2–4. Thus, these singularities of the 4rTPS
mechanism can be avoided in the applications.

7 Conclusions

This paper presented reconfiguration, kinematics and singular-
ity analysis of a new metamorphic parallel mechanism consisting
of four reconfigurable rTPS limbs. Stemming from the

Table 4 Workspace and singularity loci of the 4(rT)1PS

Workspace with singularities (3D view) Workspace with singularities (top view) Singularity loci

px¼ 0, py¼ 0, h¼ 0,

px¼ 0, py¼ 0, pz¼ 10,

a¼ 0.2, b¼ 0, h¼ 0

Fig. 8 Singularity 6 in two different configurations (a) home position (b) a general configura-
tion (px 5 24, py 5 2, and pz 5 8)
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configuration change of the reconfigurable Hooke (rT) joint, the
rTPS limb has two phases while in one phase it has mobility six
and in the other it provides a geometric constraint to the platform
by constraining the spherical joint center lie on a plane. It was
found that the platform had bifurcated rotation in two perpendicu-
lar directions with a common translation in the topology with mo-
bility 2. By changing the limb phases with different numbers and
orders of the four limbs, the mechanism demonstrated various top-
ologies with mobility change from 2 to 6 in different types. Con-
sidering the difference between the limb phases, a unified
kinematics modeling of the rTPS limb was proposed by taking
one phase as a special case of the other. Based on this, both
inverse and forward kinematics modeling for all topologies of the
mechanism was obtained and solved analytically by combining
different limb phase models. It was found that the forward kine-
matics has 20, 24, or 32 solutions due to the order change of the
limb constraint equations from angle constraint to length con-
straint. By including the geometric constraint forces and actuation
forces in the Jacobian matrix, unified singularity analysis was
demonstrated with singularity loci shown in the workspace. With
the constraint force change in the reconfigured topologies, singu-
larity configurations were found different due to the geometric
conditions. Singularity-free workspace was clearly illustrated in
each mechanism topology with mobility from 2 to 6.
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